Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of yeast starter cultures consisting of a blend of Saccharomyces cerevisiae and non-Saccharomyces yeasts has increased in recent years as a mean to address consumers’ demands for diversified wines. However, this strategy is currently limited by the lack of a comprehensive knowledge regarding the factors that determine the balance between the yeast-yeast interactions and their responses triggered in complex environments. Our previous studies demonstrated that the strain Hanseniaspora guilliermondii UTAD222 has potential to be used as an adjunct of S. cerevisiae in the wine industry due to its positive impact on the fruity and floral character of wines. To rationalize the use of this yeast consortium, this study aims to understand the influence of production factors such as sugar and nitrogen levels, fermentation temperature, and the level of co-inoculation of H. guilliermondii UTAD222 in shaping fermentation and wine composition. For that purpose, a Central Composite experimental Design was applied to investigate the combined effects of the four factors on fermentation parameters and metabolites produced. The patterns of variation of the response variables were analyzed using machine learning methods, to describe their clustered behavior and model the evolution of each cluster depending on the experimental conditions. The innovative data analysis methodology adopted goes beyond the traditional univariate approach, being able to incorporate the modularity, heterogeneity, and hierarchy inherent to metabolic systems. In this line, this study provides preliminary data and insights, enabling the development of innovative strategies to increase the aromatic and fermentative potential of H. guilliermondii UTAD222 by modulating temperature and the availability of nitrogen and/or sugars in the medium. Furthermore, the strategy followed gathered knowledge to guide the rational development of mixed blends that can be used to obtain a particular wine style, as a function of fermentation conditions.

Details

Title
Machine Learning Techniques Disclose the Combined Effect of Fermentation Conditions on Yeast Mixed-Culture Dynamics and Wine Quality
Author
Barbosa, Catarina 1   VIAFID ORCID Logo  ; Ramalhosa, Elsa 2   VIAFID ORCID Logo  ; Vasconcelos, Isabel 3 ; Reis, Marco 4   VIAFID ORCID Logo  ; Mendes-Ferreira, Ana 5 

 CoLAB VINES&WINES—National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o Desenvolvimento da Viticultura Duriense (ADVID), Edifício Centro de Excelência da Vinha e do Vinho, Régia Douro Park, 5000-033 Vila Real, Portugal; [email protected]; BioISI—UTAD, Biosystems & Integrative Sciences Institute, WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal 
 Mountain Research Centre (CIMO), ESA—Polytechnic Institute of Bragança, Campus de Sta Apolónia, 5300-253 Bragança, Portugal; [email protected] 
 CBQF/Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal; [email protected] 
 Department of Chemical Engineering, University of Coimbra, CIEPQPF, Rua Sílvio Lima, Pólo II—Pinhal de Marrocos, 3030-790 Coimbra, Portugal; [email protected] 
 BioISI—UTAD, Biosystems & Integrative Sciences Institute, WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal 
First page
107
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621331279
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.