Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hesperetin (HES) is a key biological active ingredient in citrus peels, and is one of the natural flavonoids that attract the attention of researchers due to its numerous therapeutic bioactivities that have been identified in vitro. As a bioenhancer, piperine (PIP) can effectively improve the absorption of insoluble drugs in vivo. In the present study, a cocrystal of HES and PIP was successfully obtained through solution crystallization. The single-crystal structure was illustrated and comprehensive characterization of the cocrystal was conducted. The cocrystal was formed by two drug molecules at a molar ratio of 1:1, which contained O–H–O hydrogen bonds between the carbonyl and ether oxygen of PIP and the phenolic hydroxyl group of HES. In addition, a solubility experiment was performed on powder cocrystal in simulated gastrointestinal fluid, and the result revealed that the cocrystal improves the dissolution behavior of HES compared with that of the pure substance. Furthermore, HES’s bioavailability in the cocrystal was six times higher than that of pristine drugs. These results may provide an efficient oral formulation for HES.

Details

Title
Crystal Structure, Solubility, and Pharmacokinetic Study on a Hesperetin Cocrystal with Piperine as Coformer
Author
Liu, Yanjie 1 ; Yang, Fan 1 ; Zhao, Xiuhua 1   VIAFID ORCID Logo  ; Wang, Siying 1 ; Yang, Qilei 1 ; Zhang, Xiaoxue 1 

 College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; [email protected] (Y.L.); [email protected] (F.Y.); [email protected] (S.W.); [email protected] (Q.Y.); [email protected] (X.Z.); Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China 
First page
94
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621355201
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.