Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The existence of quantum computers and Shor’s algorithm poses an imminent threat to classical public-key cryptosystems. These cryptosystems are currently used for the exchange of keys between servers and clients over the Internet. The Internet of Things (IoT) is the next step in the evolution of the Internet, and it involves the connection of millions of low-powered and resource-constrained devices to the network. Because quantum computers are becoming more capable, the creation of a new cryptographic standard that cannot be compromised by them is indispensable. There are several current proposals of quantum-resistant or post-quantum algorithms that are being considered for future standards. Given that the IoT is increasing in popularity, and given its resource-constrained nature, it is worth adapting those new standards to IoT devices. In this work, we study some post-quantum cryptosystems that could be suitable for IoT devices, adapting them to work with current cryptography and communication software, and conduct a performance measurement on them, obtaining guidelines for selecting the best for different applications in resource-constrained hardware. Our results show that many of these algorithms can be efficiently executed in current IoT hardware, providing adequate protection from the attacks that quantum computers will eventually be capable of.

Details

Title
A Comparative Study of Post-Quantum Cryptosystems for Internet-of-Things Applications
Author
Jose-Antonio, Septien-Hernandez 1   VIAFID ORCID Logo  ; Arellano-Vazquez, Magali 2   VIAFID ORCID Logo  ; Contreras-Cruz, Marco Antonio 1   VIAFID ORCID Logo  ; Ramirez-Paredes Juan-Pablo 1   VIAFID ORCID Logo 

 Department of Electronics Engineering, Campus Irapuato-Salamanca, University of Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, Salamanca 36885, Mexico; [email protected] (J.-A.S.-H.); [email protected] (M.A.C.-C.) 
 INFOTEC, Cto. Tecnopolo Sur No. 112, Aguascalientes 14050, Mexico; [email protected] 
First page
489
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621365234
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.