Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the space of solutions of the first-order Hamiltonian field theory has a presymplectic structure, we describe a class of conserved charges associated with the momentum map, determined by a symmetry group of transformations. A gauge theory is dealt with by using a symplectic regularization based on an application of Gotay’s coisotropic embedding theorem. An analysis of electrodynamics and of the Klein–Gordon theory illustrate the main results of the theory as well as the emergence of the energy–momentum tensor algebra of conserved currents.

Details

Title
Symmetries and Covariant Poisson Brackets on Presymplectic Manifolds
Author
Ciaglia, Florio M 1   VIAFID ORCID Logo  ; Fabio Di Cosmo 2   VIAFID ORCID Logo  ; Ibort, Alberto 2   VIAFID ORCID Logo  ; Marmo, Giuseppe 3   VIAFID ORCID Logo  ; Schiavone, Luca 4   VIAFID ORCID Logo  ; Zampini, Alessandro 5   VIAFID ORCID Logo 

 Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganes, Spain; [email protected] (F.M.C.); [email protected] (F.D.C.); [email protected] (A.I.) 
 Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganes, Spain; [email protected] (F.M.C.); [email protected] (F.D.C.); [email protected] (A.I.); Instituto de Ciencias Matemáticas (ICMAT) (CSIC-UAM-UC3M-UCM), 28049 Madrid, Spain 
 Istituto Nazionale di Fisica Nucleare, INFN-Sezione di Napoli, 80126 Naples, Italy; [email protected] (G.M.); [email protected] (A.Z.); Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, 80126 Naples, Italy 
 Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganes, Spain; [email protected] (F.M.C.); [email protected] (F.D.C.); [email protected] (A.I.); Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università di Napoli Federico II, 80126 Napoli, Italy 
 Istituto Nazionale di Fisica Nucleare, INFN-Sezione di Napoli, 80126 Naples, Italy; [email protected] (G.M.); [email protected] (A.Z.); Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università di Napoli Federico II, 80126 Napoli, Italy 
First page
70
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621379079
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.