It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A technique is developed to identify the types of atmosphere-ocean interaction during El Niño-Southern Oscillation events using sea surface temperature, sea level pressure (SLP), and outgoing longwave radiation (OLR) data. Two pairs of indices are derived that separate the interactions into tropical and subtropical types and basin-wide and local types. The dominant interaction type for the observed El Niño events since 1980 is identified and shown to shift with time from the tropical to subtropical and from basin-wide to local. Thus, the 21st century El Niños have become dominated by subtropical and local interactions, in strong contrast to the 20th century El Niños that were dominated by the tropical and basin-wide interactions. These changes result in the 1997–98 and 2015–16 extreme El Niños being different in their evolutions and global impacts, despite having similar intensities. SLP is the key variable for separating the tropical and subtropical types of interactions, while OLR is the key variable for separating the basin-wide and local types of interactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Earth System Science, University of California, Irvine, California, United States of America; National Satellite Meteorological Center, China Meteorological Administration, Beijing, People’s Republic of China
2 National Satellite Meteorological Center, China Meteorological Administration, Beijing, People’s Republic of China