Abstract

The nature of the Fermi surface observed in the recently discovered family of unconventional insulators starting with SmB6 is a subject of intense inquiry. Here we shed light on this question by accessing quantum oscillations in the high magnetic field-induced metallic regime above ≈47 T in YbB12, which we compare with the unconventional insulating regime. In the field-induced metallic regime, we find prominent quantum oscillations in the electrical resistivity characterised by multiple frequencies and heavy effective masses. The close similarity in Lifshitz-Kosevich low-temperature growth of quantum oscillation amplitude in insulating YbB12 to field-induced metallic YbB12, points to an origin of quantum oscillations in insulating YbB12 from in-gap neutral low energy excitations. Higher frequency Fermi surface sheets of heavy quasiparticle effective mass emerge in the field-induced metallic regime of YbB12 in addition to multiple heavy Fermi surface sheets observed in both insulating and metallic regimes. f-electron hybridisation is thus observed to persist from the unconventional insulating to the field-induced metallic regime of YbB12, in contrast to the unhybridised conduction electron Fermi surface observed in unconventional insulating SmB6. Our findings thus require an alternative model for YbB12, of neutral in-gap low energy excitations, wherein the f-electron hybridisation is retained.

Details

Title
f-electron hybridised Fermi surface in magnetic field-induced metallic YbB12
Author
Liu, H 1   VIAFID ORCID Logo  ; Hickey, A J 1   VIAFID ORCID Logo  ; Hartstein, M 1 ; Davies, A J 1   VIAFID ORCID Logo  ; Eaton, A G 1   VIAFID ORCID Logo  ; Elvin, T 1 ; Polyakov, E 1 ; Vu, T H 1 ; Wichitwechkarn, V 1 ; Förster, T 2 ; Wosnitza, J 3 ; Murphy, T P 4 ; Shitsevalova, N 5 ; Johannes, M D 6 ; Ciomaga, Hatnean M 7   VIAFID ORCID Logo  ; Balakrishnan, G 7   VIAFID ORCID Logo  ; Lonzarich, G G 1 ; Sebastian, Suchitra E 1   VIAFID ORCID Logo 

 University of Cambridge, Cavendish Laboratory, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934) 
 Helmholtz Zentrum Dresden Rossendorf, Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612) 
 Helmholtz Zentrum Dresden Rossendorf, Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612); Technische Universität Dresden, Institut für Festkörper- und Materialphysik, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
 National High Magnetic Field Laboratory, Tallahassee, USA (GRID:grid.481548.4) (ISNI:0000 0001 2292 2549) 
 The National Academy of Sciences of Ukraine, Kiev, Ukraine (GRID:grid.418751.e) (ISNI:0000 0004 0385 8977) 
 Center for Computational Materials Science, Naval Research Laboratory, Washington, USA (GRID:grid.89170.37) (ISNI:0000 0004 0591 0193) 
 University of Warwick, Department of Physics, Coventry, UK (GRID:grid.7372.1) (ISNI:0000 0000 8809 1613) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
23974648
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621816838
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.