It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aims
The accuracy of an apical‐sparing strain pattern on transthoracic echocardiography (TTE) for predicting cardiac amyloidosis (CA) has varied in prior studies depending on the underlying cohort. We sought to evaluate the performance of apical sparing and other TTE strain findings to screen for CA in an unselected population and determine the frequency that patients with echocardiographic concern for CA undergo evaluation for amyloidosis in clinical practice.
Methods and results
As strain is routinely performed at our institution on all clinical TTEs, we identified all TTEs performed from 2016 through 2019 with reported concern for CA or apical sparing. We determined the performance characteristics for echocardiographic strain findings in discriminating CA including apical sparing, the ejection fraction to global longitudinal strain ratio (EF/GLS), and the septal apical–septal basal ratio (SA/SB); other clinical predictors of confirmed CA; and predictors of patients who underwent complete evaluation for CA. CA was confirmed by endomyocardial biopsy or diagnostic cardiac imaging. A total of 547 TTEs, representing 451 patients, reported concern for CA and had adequate strain for analysis. A total of 111 patients underwent complete evaluation for amyloidosis with 100 patients undergoing complete cardiac evaluation for CA. In those 100 patients, multivariable predictors of confirmed CA were age [odds ratio (OR) 3.37 per 5 years], a visual apical‐sparing pattern (OR 10.85), and left ventricular ejection fraction (LVEF)/GLS > 4.1 (OR 35.37). CA was less likely in those with coronary artery disease (OR 0.04), hypertension (OR 0.18), and increased systolic blood pressure (OR 0.60 per 5 mm Hg increase). SA/SB [area under the curve (AUC) 0.72, 95% confidence interval (CI) 0.60–0.84] and LVEF/GLS (AUC 0.72, 95% CI 0.60–0.84) both had improved discrimination for CA compared with the apical‐sparing ratio (AUC 0.66, 95% CI 0.54–0.79). Many patients with suggestive TTE findings did not receive an evaluation for amyloidosis. Complete evaluation was more likely with Caucasian race (OR 2.1), increased septal thickness (OR 1.4), increased body mass index (OR 1.2), and if the report specifically stated ‘amyloid’ (OR 1.9). Evaluations were less likely in patients with comorbidities. While hypertension reduced the likelihood of evaluating for CA, 34% of patients with CA had hypertension (>130/80 mm Hg) at time of diagnosis.
Conclusions
In a broad population of patients undergoing TTE, apical sparing on strain imaging increased the likelihood of CA diagnosis but with modest sensitivity and specificity. GLS/EF ratio may be a more reliable tool to screen for CA. The low rate of complete evaluation in patients with concerning TTE findings indicates a strong need for practice improvement and enhanced disease awareness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Division of General Medical Sciences, Washington University School of Medicine, St. Louis, MO, USA
2 Cardiovascular Division, University of Mississippi School of Medicine, Jackson, MS, USA
3 Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, USA
4 Cardio‐Oncology Center of Excellence, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA





