It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Java vulnerabilities correspond to 91% of all exploits observed on the worldwide web. The present work aims to create antivirus software with machine learning and artificial intelligence and master in Java malware detection. Within the proposed methodology, the suspected JAR sample is executed to intentionally infect the Windows OS monitored in a controlled environment. In all, our antivirus monitors and considers, statistically, 6824 actions that the suspected JAR file can perform when executed. Our antivirus achieved an average performance of 91.58% in the distinction between benign and malware JAR files. Different initial conditions, learning functions and architectures of our antivirus are investigated. The limitations of commercial antiviruses can be supplied by intelligent antiviruses. Instead of blacklist-based models, our antivirus allows JAR malware detection preventively and not reactively as Oracle’s Java and traditional antivirus modus operandi.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of Pernambuco, Department of Computing, Recife, Brazil (GRID:grid.411227.3) (ISNI:0000 0001 0670 7996)
2 Federal University of Pernambuco, Electronics and Systems Department, Recife, Brazil (GRID:grid.411227.3) (ISNI:0000 0001 0670 7996)
3 Federal University of Pernambuco, Biomedical Engineering Department, Recife, Brazil (GRID:grid.411227.3) (ISNI:0000 0001 0670 7996)