Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We studied the formation process of a mayenite structure from hydroxide precursors in different gas media. According to X-ray diffraction data, this method allows a well-crystallized mayenite (Ca12Al14O33 or C12A7) phase to be obtained at low (500–900 °C) temperatures with an insignificant impurity of CaO. It was shown that the lattice parameters for C12A7 obtained in an inert atmosphere (Ar) were lower when compared with similar samples in the air. These results can be explained by the different levels of oxygen nonstoichiometry in the resulting phase. We noted that sintering and crystallization of mayenite proceeds at lower temperatures in Ar than in the air medium. We found the presence of donor and acceptor active sites on the surface of mayenite, which was detected by the spin probe method. The specific (per unit surface) concentration of such sites (2.5 × 1016 m−2 and 1.5 × 1015 m−2 for donor and acceptor sites, respectively) is comparable to that of γ-Al2O3, which is traditionally used as catalyst support. This allows it to be used in adsorption and catalytic technologies, taking into account its high specific surface area (~30–50 m2/g at a low synthesis temperature).

Details

Title
Mayenite Synthesis from Hydroxide Precursors: Structure Formation and Active Sites on Its Surface
Author
Kapishnikov, Aleksandr V 1 ; Kenzhin, Roman M 1 ; Koskin, Anton P 2 ; Volodin, Alexander M 2 ; Geydt, Pavel V 3   VIAFID ORCID Logo 

 Laboratory of Functional Diagnostics of Low-Dimensional Structures for Nanoelectronics, Department of Physics, Novosibirsk State University, Pirogova Str., 2, 630090 Novosibirsk, Russia; [email protected]; Federal Research Center Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva, 5, 630090 Novosibirsk, Russia; [email protected] (A.P.K.); [email protected] (A.M.V.) 
 Federal Research Center Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva, 5, 630090 Novosibirsk, Russia; [email protected] (A.P.K.); [email protected] (A.M.V.) 
 Laboratory of Functional Diagnostics of Low-Dimensional Structures for Nanoelectronics, Department of Physics, Novosibirsk State University, Pirogova Str., 2, 630090 Novosibirsk, Russia; [email protected] 
First page
778
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627773316
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.