Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The strong environmental impact caused by plastic pollution has led research to address studies from different perspectives. The mathematical modeling of the biodegradation kinetics of solid materials is a major challenge since there are many influential variables in the process and there is interdependence of microorganisms with internal and external factors. In addition, as solid substrates that are highly hydrophobic, mass transfer limitations condition degradation rates. Some mathematical models have been postulated in order to understand the biodegradation of plastics in natural environments such as oceans. However, if tangible and optimizable solutions are to be found, it is necessary to study the biodegradation process under controlled conditions, such as using bioreactors and composting systems. This review summarizes the biochemical fundamentals of the main plastics (both petrochemical and biological origins) involved in biodegradation processes and combines them with the main mathematical equations and models proposed to date. The different biodegradation studies of plastics under controlled conditions are addressed, analyzing the influencing factors, assumptions, model developments, and correlations with laboratory-scale results. It is hoped that this review will provide a comprehensive overview of the process and will serve as a reference for future studies, combining practical experimental work and bioprocess modeling systems.

Details

Title
Biotechnological Aspects and Mathematical Modeling of the Biodegradation of Plastics under Controlled Conditions
Author
Baldera-Moreno, Yvan 1   VIAFID ORCID Logo  ; Pino, Valentina 2 ; Farres, Amelia 3 ; Banerjee, Aparna 4   VIAFID ORCID Logo  ; Gordillo, Felipe 2 ; Andler, Rodrigo 2   VIAFID ORCID Logo 

 Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile; [email protected] 
 Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile; [email protected] (V.P.); [email protected] (F.G.) 
 Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; [email protected] 
 Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; [email protected] 
First page
375
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627814827
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.