It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In South America, the crab-eating fox Cerdocyon thous occurs in sympatry to the ecologically similar, and phylogenetically close Lycalopex vetulus to the North, and Lycalopex gymnocercus to the South of its range. We studied character displacement in Cerdocyon under the effect of Bergmann's rule and the presence (or absence either) of Lycalopex within the crab-eating fox range. We performed skull shape analysis on 191 C. thous specimens and divided them in three distinct groups, depending on whether Cerdocyon occurs in sympatry or in allopatry to Lycalopex species. We tested for differences in size and shape between Cerdocyon groups and regressed both skull size and sexual size dimorphism against latitude and temperature, while controlling for spatial autocorrelation in the phenotypes. Southern Cerdocyon specimens present enlarged temporalis muscle and slender carnassial, both suggestive of a shift towards increased carnivory. Such a niche shift is interpreted as a mean to reduce competition to the larger Lycalopex species, which is still smaller than Cerdocyon. Consistently with the above, the degree of sexual shape and size dimorphism in Cerdocyon increases southward. We found a complex but coherent pattern of size and shape differentiation in Cerdocyon groups, which is consistent with the effects of both competition and Bergmann's rule. Cerdocyon reduces competition to Lycalopex by growing larger in the North. To the South, Cerdocyon is still larger, in keeping with Bergmann's rule, but strongly differs in skull shape from both its Lycalopex competitor and from any other Cerdocyon. Since the Southern Lycalopex species is much more similar in size to Cerdocyon than its Northern congeneric, this suggests that shape differences serve the goal of reducing competition between Cerdocyon and Lycalopex to the South, as size differences do to the North. The absence of the hypercarnivorous canid Speothos venaticus from the southern range of Cerdocyon may have allowed such a pattern to take place.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer