Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This work aims at developing and testing a novel Coalitional Distributed Model Predictive Control (C-DMPC) strategy suitable for vehicle platooning applications. The stability of the algorithm is ensured via the terminal constraint region formulation, with robust positively invariant sets. To ensure a greater flexibility, in the initialization part of the method, an invariant table set is created containing several invariant sets computed for different constraints values. The algorithm was tested in simulation, using both homogeneous and heterogeneous initial conditions for a platoon with four homogeneous vehicles, using a predecessor-following, uni-directionally communication topology. The simulation results show that the coalitions between vehicles are formed in the beginning of the experiment, when the local feasibility of each vehicle is lost. These findings successfully prove the usefulness of the proposed coalitional DMPC method in a vehicle platooning application, and illustrate the robustness of the algorithm, when tested in different initial conditions.

Details

Title
Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications
Author
Maxim, Anca  VIAFID ORCID Logo  ; Constantin-Florin Caruntu  VIAFID ORCID Logo 
First page
997
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627831704
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.