Full Text

Turn on search term navigation

Copyright © 2022 Tianwen Yao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

In order to ensure high reliability, the efficiency of traditional aerospace software testing is often low. With the rapid development of machine learning, its powerful data feature extraction ability has great potential in improving the efficiency of aerospace software testing. Therefore, this paper proposed a software defect prediction method based on deep neural network and process measurement. Based on the NASA data set and combined with the software process data, the software defect measurement set is constructed. 35 measurement elements are used as the original input, and multiple single-layer automatic coding networks are superimposed to form the deep neural network model of software defect. The model is finally trained by the layer-by-layer greedy training method to realize software defect prediction. Experimental verification shows that the prediction method has a good prediction effect on aerospace software defects, and the accuracy rate reached 90%, which can greatly improve the efficiency and effect of aerospace software testing.

Details

Title
Defect Prediction Technology of Aerospace Software Based on Deep Neural Network and Process Measurement
Author
Yao, Tianwen 1   VIAFID ORCID Logo  ; Zhang, Ben 1 ; Peng, Jun 1 ; Han, Zhiqiang 1 ; Yang, Zhaobing 1 ; Zhang, Zhi 1 ; Zhang, Bo 1 

 Systems Engineering Institute of Sichuan Aerospace, Chengdu 610100, China 
Editor
Antonio M Gonçalves de Lima
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2628210098
Copyright
Copyright © 2022 Tianwen Yao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/