It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We analyze the commutation relations of light-ray operators in conformal field theories. We first establish the algebra of light-ray operators built out of higher spin currents in free CFTs and find explicit expressions for the corresponding structure constants. The resulting algebras are remarkably similar to the generalized Zamolodchikov’s W∞ algebra in a two-dimensional conformal field theory. We then compute the commutator of generalized energy flow operators in a generic, interacting CFTs in d > 2. We show that it receives contribution from the energy flow operator itself, as well as from the light-ray operators built out of scalar primary operators of dimension ∆ ≤ d − 2, that are present in the OPE of two stress-energy tensors. Commutators of light-ray operators considered in the present paper lead to CFT sum rules which generalize the superconvergence relations and naturally connect to the dispersive sum rules, both of which have been studied recently.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institut de Physique Théorique (Unité Mixte de Recherche 3681 du CNRS), Université Paris Saclay, CNRS, Gif-sur-Yvette, France; Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France (GRID:grid.425258.c) (ISNI:0000 0000 9123 3862)
2 CERN, Theoretical Physics Department, Geneva 23, Switzerland (GRID:grid.9132.9) (ISNI:0000 0001 2156 142X)