It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Given that spin and orbital angular momenta of photons have been widely investigated in optical communication and information processing systems, efficient decoding of optical vortex states using a single element is highly anticipated. In this work, a wavelength-independent holographic scheme has been proposed for total angular momentum sorting of both scalar and vector vortex states with a stationary broadband geometric-phase waveplate by means of reference-free shearing interferometry. The entangled spin and orbital angular momentum modes can be distinguished simultaneously based on the spin–orbit optical Hall effect in order to realize single-shot vortex detection. The viability of our scheme has also been demonstrated experimentally.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293)