Full text

Turn on search term navigation

© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The neurophysiological footprint of brain activity after cardiac arrest and during near-death experience (NDE) is not well understood. Although a hypoactive state of brain activity has been assumed, experimental animal studies have shown increased activity after cardiac arrest, particularly in the gamma-band. No study has yet investigated this matter in humans. Here, we present continuous electroencephalography (EEG) recording from a dying human brain, obtained from an 87-year-old patient undergoing cardiac arrest after traumatic subdural hematoma. An increase of absolute power in gamma activity in the narrow and broad bands and a decrease in theta power is seen after suppression of bilateral hemispheric responses. After cardiac arrest, delta, beta, alpha and gamma power were decreased but a higher percentage of relative gamma power was observed when compared to the interictal interval. Cross-frequency coupling revealed modulation of left-hemispheric gamma activity by alpha and theta rhythms across all windows, even after cessation of cerebral blood flow. The strongest coupling is observed for narrow- and broad-band gamma activity by the alpha waves during left-sided suppression and after cardiac arrest. Albeit the influence of neuronal injury and swelling, our data provide the first evidence from the dying human brain in a non-experimental, real-life acute care clinical setting and advocate that the human brain may possess the capability to generate coordinated activity during the near-death period.

Details

Title
Enhanced Interplay of Neuronal Coherence and Coupling in the Dying Human Brain
Author
Vicente, Raul; Rizzuto, Michael; Sarica, Can; Yamamoto, Kazuaki; Sadr, Mohammed; Khajuria, Tarun; Fatehi, Mostafa; Moien-Afshari, Farzad; Haw, Charles S; Llinas, Rodolfo R; Lozano, Andres M; Neimat, Joseph S; Zemmar, Ajmal
Section
ORIGINAL RESEARCH article
Publication year
2022
Publication date
Feb 22, 2022
Publisher
Frontiers Research Foundation
ISSN
16634365
e-ISSN
16634365
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2631743817
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.