It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Xianshuihe Fault Zone is one of the most historically seismically active regions in mainland China. However, the seismicity along this fault zone has been quiescent for the past 40 years, since the Daofu M6.9 earthquake in 1981. Understanding its current deformation patterns and fault coupling characteristics is of great significance to estimate the potential risk of strong earthquakes. In this study, we analyzed the dynamic deformation and fault coupling characteristics along the Xianshuihe Fault Zone using Global Navigation Satellite System (GNSS) data for 1999–2007 and 2016–2020. The results show that the deformation pattern of the Xianshuihe fault zone underwent a dynamic adjustment after the 2008 Wenchuan Mw7.9 and 2013 Lushan Mw6.6 earthquakes, i.e., the maximum shear strain accumulation rates of the Luhuo and Daofu sections significantly decreased from 6.0 × 10–8/a to 3.2 × 10–8/a, while that of the southeastern segment (i.e., Kangding and Moxi sections) increased from 4.5 × 10–8/a to 6.2 × 10–8/a. Additionally, the slip rate and deformation width of the Xianshuihe Fault Zone also changed during these two periods. Combined with the near-field cross-fault observation data, we suggest that the surrounding strong earthquakes Wenchuan and Lushan had evident differential impacts on the deformation pattern of the Xianshuihe Fault Zone. The fault-coupling inversion results show that the locking degree of the Xianshuihe Fault Zone continued to increase after the Wenchuan and Lushan earthquakes, especially the Qianning and Moxi sections increased significantly, with an average coupling coefficient of greater than 0.9 and left-lateral slip-rate deficits of ~ 5 mm/a and ~ 8 mm/a, respectively. In contrast, the locking degree of the Kangding section decreased with almost no slip-rate deficit, which is in a state of creeping status. The analysis of the recent rupture history and strain accumulation characteristics of the Xianshuihe Fault Zone indicates that both the Qianning and Moxi sections have a high seismic potential for the next strong earthquake in the Xianshuihe Fault Zone.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 CEA, The First Monitoring and Application Center, Tianjin, China (GRID:grid.450296.c) (ISNI:0000 0000 9558 2971)
2 National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China (GRID:grid.450296.c) (ISNI:0000 0000 9558 2971)