Full Text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The β‐glucuronidase gene, uidA (GUS), has remained a favorite reporter gene in plants since its introduction in 1987 for its stability and versatility in a variety of fluorometric, spectrophotometric, and histochemical techniques. One of the most popular uses is as a reporter gene for visualizing endogenous promoter activities within plant tissues. Despite this popularity, specific protocols for minimizing nonrepresentative staining patterns, including false negatives, in challenging tissue types are not common. This became a large issue during our work on dark‐grown Arabidopsis hypocotyls, and we set out to develop a protocol that would ensure accurate staining in a tissue that is biologically resistant to reagent penetration. Through extensive testing using a variety of constitutive and endogenous promoter::GUS fusion lines, we have developed an optimized GUS staining protocol that combines the use of acetone as a fixative, deliberate physical damage, and proper positive and negative controls to help ensure accurate staining along the hypocotyl while minimizing false negatives. Hopefully, our recommendations will allow for improved staining that more accurately reflects the true activity of cloned endogenous promoters and thus facilitate a more accurate understanding of promoter activity in Arabidopsis hypocotyls and other hard‐to‐stain tissues.

Details

Title
Fake news blues: A GUS staining protocol to reduce false‐negative data
Author
Dedow, Lauren K 1   VIAFID ORCID Logo  ; Oren, Emily 1   VIAFID ORCID Logo  ; Braybrook, Siobhan A 1   VIAFID ORCID Logo 

 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA 
Section
ORIGINAL RESEARCH
Publication year
2022
Publication date
Feb 2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
24754455
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2631756305
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.