Abstract

This manuscript describes measurements of water-based liquid scintillators (WbLS), demonstrating separation of the Cherenkov and scintillation components using a low energy β source and the fast timing response of a Large Area Picosecond Photodetector (LAPPD). Additionally, the time profiles of three WbLS mixtures, defined by the relative fractions of scintillating compound, are characterized, with improved sensitivity to the scintillator rise-time. The measurements were made using both an LAPPD and a conventional photomultiplier tube (PMT). All samples were measured with an effective resolution O100ps, which allows for the separation of Cherenkov and scintillation light (henceforth C/S separation) by selecting on the arrival time of the photons alone. The Cherenkov purity of the selected photons is greater than 60% in all cases, with greater than 80% achieved for a sample containing 1% scintillator. This is the first demonstration of the power of synthesizing low light yield scintillators, of which WbLS is the canonical example, with fast photodetectors, of which LAPPDs are an emerging leader, and has direct implication for future mid- and large-scale detectors, such as Theia, ANNIE, and AIT-NEO.

Details

Title
Cherenkov and scintillation separation in water-based liquid scintillator using an LAPPDTM
Author
Kaptanoglu, T 1   VIAFID ORCID Logo  ; Callaghan, E J 1 ; Yeh, M 2 ; Orebi Gann G D 1 

 University of California, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Lawrence Berkeley National Laboratory, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
 Brookhaven National Laboratory, Upton, USA (GRID:grid.202665.5) (ISNI:0000 0001 2188 4229) 
Publication year
2022
Publication date
Feb 2022
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632029797
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.