Full Text

Turn on search term navigation

© 2022 Moughaizel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The metabolic syndrome (MetS) has become a global public health burden due to its link to cardiovascular disease and diabetes mellitus. The present study was designed to characterize the metabolic and cardiovascular disturbances, as well as changes in gut microbiota associated with high-fructose high-fat diet (HFFD)-induced MetS in Watanabe heritable hyperlipidemic (WHHL) rabbits. Twenty-one Watanabe rabbits were assigned to a control (n = 9) and HFFD (n = 12) groups, receiving a chow diet and a HFFD, respectively. During a 12-weeks protocol, morphological parameters were monitored; plasma fasting levels of lipids, glucose and insulin were measured and a glucose tolerance test (GTT) was performed. HOMA-IR was calculated. Cardiac function and vascular reactivity were evaluated using the Langendorff isolated heart and isolated carotid arteries methods, respectively. 16S rRNA sequencing of stool samples was used to determine gut microbial composition and abundance. HFFD-fed Watanabe rabbits exhibited increased fasting insulin (p < 0.03, 12th week vs. Baseline), HOMA-IR (p < 0.03 vs. Control), area under the curve of the GTT (p < 0.02 vs. Control), triglycerides (p < 0.05, 12th week vs. Baseline), TC (p < 0.01 vs. Control), LDL-C (p < 0.001 vs. Control). The HFFD group also displayed a significant decrease in intestinal microbial richness, evenness and diversity (FDR < 0.001, FDR < 0.0001, FDR < 0.01, respectively vs. Control group) and an increase in its Firmicutes/Bacteroidetes ratio (R = 3.39 in control vs. R = 28.24 in the HFFD group) indicating a shift in intestinal microbial composition and diversity. Our results suggest that HFFD induces insulin resistance and gut microbiota dysbiosis and accentuates dyslipidemia; and that, when subjected to HFFD, Watanabe rabbits might become a potential diet-induced MetS animal models with two main features, dyslipidemia and insulin resistance.

Details

Title
Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits
Author
Moughaizel, Michelle; Dagher, Elie; Amin Jablaoui; Thorin, Chantal; Rhimi, Moez; Desfontis, Jean-Claude; Mallem, Yassine
First page
e0264215
Section
Research Article
Publication year
2022
Publication date
Feb 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632135033
Copyright
© 2022 Moughaizel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.