Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bactericides, fungicides, and other pesticides play an important role in the management of plant diseases. However, their use can result in residues on plants and in the environment, with potentially detrimental consequences. The use of streptomycin, oxytetracycline, copper-based products, and some fungicides is correlated with increased resistance among plant pathogens to these agents. Likewise, the recent rise in the incidence of environmental triazole fungicide-resistant Aspergillus fumigatus, the cause of aspergillosis in humans, has caused concern, particularly in Europe. Through horizontal gene transfer, genes can be exchanged among a variety of bacteria in the plant production environment, including phytopathogens, soil bacteria, and zoonotic bacteria that are occasionally present in that environment and in the food chain. Through mechanisms of horizontal gene transfer, co-resistance, cross-resistance, and gene up-regulation, resistance to one compound may confer resistance and multi-drug resistance to other similar, or even very dissimilar, compounds. Given the global rise in antimicrobial-resistant (AMR) organisms, and their effects on plant, animal, and human health, the prudent use of pesticides is required to maintain their effectiveness for food security and sustainable production, and to minimize the emergence and transmission of AMR organisms from horticultural sources.

Details

Title
Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective
Author
Miller, Sally A 1   VIAFID ORCID Logo  ; Jorge Pinto Ferreira 2 ; LeJeune, Jeffrey T 2 

 Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA; [email protected]; Infectious Diseases Institute, a FAO Reference Centre for Antimicrobial Resistance, The Ohio State University, Columbus, OH 43210, USA 
 Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy; [email protected] 
First page
289
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632144081
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.