Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study details the development of a lightweight and high performance model, targeting real-time object detection. Several designed features were integrated into the proposed framework to accomplish a light weight, rapid execution, and optimal performance in object detection. Foremost, a sparse and lightweight structure was chosen as the network’s backbone, and feature fusion was performed using modified feature pyramid networks. Recent learning strategies in data augmentation, mixed precision training, and network sparsity were incorporated to substantially enhance the generalization for the lightweight model and boost the detection accuracy. Moreover, knowledge distillation was applied to tackle dropping issues, and a student–teacher learning mechanism was also integrated to ensure the best performance. The model was comprehensively tested using the MS-COCO 2017 dataset, and the experimental results clearly demonstrated that the proposed model could obtain a high detection performance in comparison to state-of-the-art methods, and required minimal computational resources, making it feasible for many real-time deployments.

Details

Title
A Light-Weight CNN for Object Detection with Sparse Model and Knowledge Distillation
Author
Jing-Ming, Guo  VIAFID ORCID Logo  ; Jr-Sheng, Yang  VIAFID ORCID Logo  ; Seshathiri, Sankarasrinivasan; Hung-Wei, Wu
First page
575
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632724598
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.