Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Network slicing has become a fundamental property for next-generation networks, especially because an inherent part of 5G standardisation is the ability for service providers to migrate some or all of their network services to a virtual network infrastructure, thereby reducing both capital and operational costs. With network function virtualisation (NFV), network functions (NFs) such as firewalls, traffic load balancers, content filters, and intrusion detection systems (IDS) are either instantiated on virtual machines (VMs) or lightweight containers, often chained together to create a service function chain (SFC). In this work, we review the state-of-the-art NFV and SFC implementation frameworks and present a taxonomy of the current proposals. Our taxonomy comprises three major categories based on the primary objectives of each of the surveyed frameworks: (1) resource allocation and service orchestration, (2) performance tuning, and (3) resilience and fault recovery. We also identify some key open research challenges that require further exploration by the research community to achieve scalable, resilient, and high-performance NFV/SFC deployments in next-generation networks.

Details

Title
Network Function Virtualization and Service Function Chaining Frameworks: A Comprehensive Review of Requirements, Objectives, Implementations, and Open Research Challenges
Author
Adoga, Haruna Umar  VIAFID ORCID Logo  ; Pezaros, Dimitrios P  VIAFID ORCID Logo 
First page
59
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632737139
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.