Full Text

Turn on search term navigation

© 2022 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose

Early detection and classification of bone tumors in the proximal femur is crucial for their successful treatment. This study aimed to develop an artificial intelligence (AI) model to classify bone tumors in the proximal femur on plain radiographs.

Methods

Standard anteroposterior hip radiographs were obtained from a single tertiary referral center. A total of 538 femoral images were set for the AI model training, including 94 with malignant, 120 with benign, and 324 without tumors. The image data were pre-processed to be optimized for training of the deep learning model. The state-of-the-art convolutional neural network (CNN) algorithms were applied to pre-processed images to perform three-label classification (benign, malignant, or no tumor) on each femur. The performance of the CNN model was verified using fivefold cross-validation and was compared against that of four human doctors.

Results

The area under the receiver operating characteristic (AUROC) of the best performing CNN model for the three-label classification was 0.953 (95% confidence interval, 0.926–0.980). The diagnostic accuracy of the model (0.853) was significantly higher than that of the four doctors (0.794) (P = 0.001) and also that of each doctor individually (0.811, 0.796, 0.757, and 0.814, respectively) (P<0.05). The mean sensitivity, specificity, precision, and F1 score of the CNN models were 0.822, 0.912, 0.829, and 0.822, respectively, whereas the mean values of four doctors were 0.751, 0.889, 0.762, and 0.797, respectively.

Conclusions

The AI-based model demonstrated high performance in classifying the presence of bone tumors in the proximal femur on plain radiographs. Our findings suggest that AI-based technology can potentially reduce the misdiagnosis of doctors who are not specialists in musculoskeletal oncology.

Details

Title
Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation
Author
Chan-Woo, Park; Seong-Je Oh; Kyung-Su, Kim; Min-Chang, Jang; Il Su Kim; Young-Keun, Lee; Myung Jin Chung; Cho, Baek Hwan; Sung-Wook Seo
First page
e0264140
Section
Research Article
Publication year
2022
Publication date
Feb 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632798687
Copyright
© 2022 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.