Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

X-ray diffraction (XRD) is an important and widely used material characterization technique. With the recent development in material science technology and understanding, various new materials are being developed, which requires upgrading the existing analytical techniques such that emerging intricate problems can be solved. Although XRD is a well-established non-destructive technique, it still requires further improvements in its characterization capabilities, especially when dealing with complex mineral structures. The present review conducts comprehensive discussions on atomic crystal structure, XRD principle, its applications, uncertainty during XRD analysis, and required safety precautions. The future research directions, especially the use of artificial intelligence and machine learning tools, for improving the effectiveness and accuracy of the XRD technique, are discussed for mineral characterization. The topics covered include how XRD patterns can be utilized for a thorough understanding of the crystalline structure, size, and orientation, dislocation density, phase identification, quantification, and transformation, information about lattice parameters, residual stress, and strain, and thermal expansion coefficient of materials. All these important discussions on XRD analysis for mineral characterization are compiled in this comprehensive review, so that it can benefit specialists and engineers in the chemical, mining, iron, metallurgy, and steel industries.

Details

Title
X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions
Author
Ali, Asif  VIAFID ORCID Logo  ; Chiang, Yi Wai  VIAFID ORCID Logo  ; Santos, Rafael M  VIAFID ORCID Logo 
First page
205
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633029971
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.