Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Three-dimensional printing is a dynamically developing field of industry. Its main advantage is the small amount of waste, no need to use specialized tools, and easy control of the mechanical properties of the printed model. One of the most popular techniques of 3D printing is FDM. The main factor influencing the mechanical properties of 3D-printed materials is the filling density. The aim of this study was to determine the mechanical properties of porous structures with a porosity gradient of PLA samples printed using the FDM technique. The accuracy of mapping the structures by computed tomography was assessed, and then a static compression test was performed. It has been shown that the strength properties increased with the increase in the filling density. The highest value of compression strength, amounting to 41.2 MPa, was observed for samples made of PLA with an 80% filling degree, whereas the lowest value of compression strength was found in PLA-T samples with a filling degree of 10%, reaching only 0.6 MPa. It was found that not only the core filling density, but also the outer layers, influences the mechanical properties. The assessment of spatial architecture allowed for a qualitative and quantitative assessment. The obtained images from the computed tomograph showed that the designed sample models were correctly reproduced in the entire volume.

Details

Title
The Influence of the Gradient Infill of PLA Samples Produced with the FDM Technique on Their Mechanical Properties
Author
Maszybrocka, Joanna  VIAFID ORCID Logo  ; Dworak, Michał  VIAFID ORCID Logo  ; Nowakowska, Grażyna; Osak, Patrycja  VIAFID ORCID Logo  ; Łosiewicz, Bożena  VIAFID ORCID Logo 
First page
1304
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633134420
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.