Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to remove Cu2+ from wastewater, a kind of microsphere adsorbent (SCDO) with high efficiency for Cu2+ adsorption was prepared by the microdrop condensation method, where chitosan (CTS) and sodium alginate (SA) were used as the matrix to crosslink β-cyclodextrin (β-CD) and zeolite (Zeo). The structure and properties of SCDO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Upon that, the adsorption performance of SCDO for Cu2+ was studied, in which the effects of pH, initial concentration, dosage, adsorption time and temperature were investigated. The results showed that the removal rate of Cu2+ reached 97.08%, and the maximum adsorption capacity was 24.32 mg/g with the temperature at 30 °C, the dosage of SCDO at 12 g/L, the initial concentration of Cu2+ at 100 mg/L, the pH of the solution at 6.0 and the adsorption time at 120 min, respectively. The adsorption process of Cu2+ by SCDO occurred in accordance with quasi-second-order kinetics model and Langmuir adsorption isotherm. After four repeats of continuous adsorption and desorption, the regenerative removal rate of Cu2+ could still reach 84.28%, which indicated that SCDO had outstanding reusability.

Details

Title
Study on the Performance of Composite Adsorption of Cu2+ by Chitosan/β-Cyclodextrin Cross-Linked Zeolite
Author
Xiong, Qiuqiu; Zhang, Fenge
First page
2106
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633179184
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.