Full Text

Turn on search term navigation

© 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies/

Abstract

Large amounts of plant biomass are produced by public work projects. This plant biomass was evaluated as an aid for the dewatering of sludge from a sewage treatment plant. The relationships were investigated between the different structural types of plant biomass (grass clippings, pruned branches of Japanese black pine, and bamboo powder) and their dewaterability potential in digested sludge. Microscopic observations revealed that grass fibrous materials and Japanese black pine needles had hollow structures. However, xylem, bark parts of Japanese black pine, and bamboo culms exhibited woody cell structures. The difference in water retention value of grass clippings after filtration and centrifugation was higher than that of Japanese pine and bamboo, indicating that the water present within the pores of grass fibrous materials could be easily removed. Plant biomass was captured inside the floc when digested sludge was mixed with plant biomass and flocculation was performed by adding a flocculant. The addition of grass clippings exhibited better dewaterability compared with both Japanese black pine and bamboo. The grass fibrous materials used as a dewatering aid effectively improved the dewaterability of the digested sludge because the water in a sludge floc may be drained from within the grass fibrous materials.

Details

Title
Effect of structural features of plant biomass as a dewatering aid for digested sludge from a wastewater treatment plant
Author
Tanifuji, K; Yamasaki, Y; Miyamoto, T; Shigemura, H
Pages
2043-2052
Section
Research
Publication year
2022
Publication date
May 2022
Publisher
North Carolina State University
e-ISSN
19302126
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2634085745
Copyright
© 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms available at https://bioresources.cnr.ncsu.edu/about-the-journal/editorial-policies/