It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Type I X-ray bursts (XRBs) are the most frequently observed thermonuclear explosions in nature. The 22Mg(α,p)25Al reaction plays a critical role in XRB models. However, experimental information is insufficient to deduce a precise 22Mg(α,p)25Al reaction rate for the respective XRB temperature range. A new measurement of 25Al+p resonant scattring was performed up to the astrophysically interested energy region of 22Mg(α,p)25Al. Several resonances were observed in the excitation functions, and their level properties have been determined based on an R-matrix analysis. In particular, proton widths and spin-parities of four natural-parity resonances above the α threshold of 26Si, which can contribute the reaction rate of 22Mg(α,p)25Al, were first experimentally determined.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer