Content area
We use PoroTomo experimental data to compare the performance of distributed acoustic sensing (DAS) and geophone observations in retrieving data to execute standard subsurface mapping and seismic monitoring activities. The PoroTomo experiment consists of two “seismic systems”: (a) a 8.6 km long optical fibre cable deployed across the Brady geothermal field and covering an area of 1.5
To assess the quality of data for subsurface mapping tasks, we measure the propagation of the P wave generated by the regional event across the geothermal field in both seismic systems in term of relative time delays, for a number of configurations and segments. Additionally, we analyse and compare the amplitude and the signal-to-noise ratio (SNR) of the P wave in the two systems at high resolution. For testing the potential of DAS data in seismic event locations, we first perform an analysis of the geophone data to retrieve a reference location of a microseismic event, based on expert opinion. Then, we a adopt different workflow for the automatic location of the same microseismic event using DAS data. To assess the quality of the data for tasks related to monitoring distant events, we retrieve both the propagation direction and apparent velocity of the wave field generated by the
Our results indicate that (1) at a local scale, the seismic P-wave propagation (i.e. time delays) and their characteristics (i.e. SNR and amplitude) along a single cable segment are robustly consistent with recordings from co-located geophones (delay times
1 Introduction
Distributed acoustic sensing (DAS) is a novel technology that records ground vibrations necessary for seismological investigations of the shallow crust . DAS technology can be used to record vibrations of a optical fibre cable in terms of the temporal derivative of the strain along the cable direction . DAS recordings of ground motion along a fibre cable can be obtained at unprecedented high resolution (less than 1 m, if necessary) without the need for deploying tonnes of instruments on the ground . Moreover, DAS recordings can be obtained for Earth's regions which could be unfeasible to reach with standard seismological instruments
The potential of DAS recordings to be used as “standard” seismic signals has been investigated in previous works
The PoroTomo experiment investigated the Brady geothermal field with both conventional seismic instruments (238 short-period three-component seismometers) and 8.6 km of optical fibre cable . PoroTomo seismic data and DAS recordings have been previously analysed in numerous other studies . In particular, strictly compares the signal recorded from DAS channels and co-located seismometers for a 4.3 regional event occurred near Hawthorne (about 150 km south–southeast from the test site). The authors tested different theoretical approaches, like matching the difference of two geophone waveforms with the amplitudes of the sum of the DAS channels in between, obtaining promising results. From application of template matching to DAS recordings, detected microseismic activity at a signal-to-noise ratio (SNR) below 1, which was then compared to the pumping history of the geothermal field .
In this study, we move a step forward and test the potential of DAS recordings to produce data for specific tasks, namely “subsurface mapping” and “detection and location of seismicity”. For “subsurface mapping”, we mean the definition of spatial variations of elastic properties in the subsurface at high resolution. With “seismic event detection and location”, we have in mind those activities adopted in real-time monitoring procedures. We build on the previous studies and we assume that DAS recordings are coherent to standard seismographic recordings, in the sense that the fibre cable is able to sense elastic waves traversing the rocks where the cable is deployed. From this starting point, we investigate (1) how standard observables used in subsurface mapping (and their spatial variation across the geothermal field) can be extracted from DAS recordings; and (2) how DAS recordings perform in the automatic detection and location of earthquakes at two different scales of epicentral distance, local and regional. In both cases, we strictly compare the observations obtained using DAS recordings, with similar analyses performed on co-located seismometers. We anticipate here that the main differences of the results obtained with DAS recordings, with respect to standard seismology, are (1) the necessity for treating a huge amount of data; and (2) the availability of horizontal recordings only, which requires particular care by the time of interpreting results obtained from standard seismic analysis tools.
1.1 Geological background and the PoroTomo experiment
The Brady geothermal system is located in the Hot Springs Mountains, northwestern Nevada, USA. The geothermal reservoir lies within layered Tertiary volcanic rocks covered by a sedimentary layer of variable thickness . The bottom of the geothermal reservoir is constituted by a Mesozoic metamorphic and plutonic crystalline basement, which is found at depths between 600 and 1500 m below the surface.
The main structural feature of the area is the Brady fault zone, a fault system extending for some 10 km with a dominant NNE strike and steeply dipping to the NW. The geothermal system is strictly related to the presence of those steeply dipping normal faults, where dilatation at depth promotes the fluids' circulation . The Brady geothermal system is the only one in the area that displays surface geothermal phenomena, for about 4 km along the Brady fault zone. In the area of interest, such geothermal phenomena (e.g. fumarole warm grounds and mud volcanoes) are found, mainly distributed in between the surface expression of two branches of the Brady fault (Fig. ). The Brady geothermal field is classified as a high-enthalpy geothermal resource, reaching a temperature close to 180 C .
Figure 1
PoroTomo experiment map: fibre cable used for DAS (coloured line; colours indicate average azimuth of the segments), numbers indicate segments described in the text; nodal stations; faults (grey lines), warm ground (yellow areas); fumaroles (black diamonds) and mud volcanoes (open diamonds). A red arrow indicates the direction of an incoming P wave for the 4.3 Hawthorne earthquake.
[Figure omitted. See PDF]
The PoroTomo experiment covers the northwestern part of the Brady geothermal field where subsidence has been observed in the past . In the PoroTomo area, close to the locations of several injection wells, water circulation models suggest that almost horizontal water flow at shallow depth should occur from the northwest toward the southern portion of the geothermal field. The PoroTomo experiment tested different technologies and different tools for the analysis of the ground deformation of the Brady geothermal field during a predefined sequence of human activities at the geothermal wells (e.g. repeated injections). All geophysical data recorded and collected during PoroTomo experiment can be found on the Geothermal Data Repository (GDR) repository , together with information on the geothermal operations. Among others, data from the PoroTomo experiment have been used for comparison of catalogs of microseismicity and pumping records on a daily basis , detection of microseismic events through template matching applied to DAS data , active seismic tomography , comparison of DAS and geophone data for regional seismic waves and evaluation of beam-forming potential in DAS data .
2 Data and methodsWe make use of DAS recordings acquired during March 2016 in the framework of the PoroTomo experiment . The optical fibre cable was deployed with a zig-zag geometry composed of 71 contiguous segments; on average, the length of individual segments was on the order of 150 m. Relevant segments used in the next sections are numbered in Fig. . Acquisition gauge length is fixed to 10 m, with channel sampling every 1 m .
2.1 Subsurface mapping
For the subsurface mapping tasks, described in Sect. , we use one channel every gauge length (10 m) and discard the channels too close (10 m) to the bending point of the cable
We make use of the waveforms relative to the 4.3 Hawthorne event. In this case, the analysis is limited to P-wave arrival. The P wave can be clearly seen in both DAS and nodes recording (Fig. ). Here, we filter the waveforms between 0.5 and 2 Hz, enhancing the earthquake signal. DAS recordings are downsampled to 500 sps, to be consistent with nodes recordings. To compare nodes to DAS recordings, horizontal components of the nodes are rotated to match the azimuth of the closest segment of fibre cable (Fig. ). All computations on nodal recording are operated on the rotated seismograms, if not specified.
Figure 2
Waveforms generated from the 4.3 Hawthorne earthquake, with a zoom on P wave with the quantities analysed in the study: P-wave arrival time, MAX amp, energy in the P window (for computing SNR). Node 51: (a–b) closest DAS channel to node 51 (channel 5406) (c–d).
[Figure omitted. See PDF]
The analysis of the 4.3 event consists in the automatic determination of the relative P-wave arrival times for each segment of fibre cable and for all co-located nodes. The P-wave time delays are computed following the approach described in and in . For each of the three experiments (see Sect. ), we compute the P-wave time delays for the selected DAS channels (one every 10 m). Following , we compute (1) the time delay between all couples of selected channels, cross correlating a 2 s long time window; (2) the absolute time delay for the th selected channel under the condition of ; and finally (3) the uncertainty on the absolute time delay following the Bayesian approach described in , where, for each couple of channels, a family of relative P-wave time delays is retrieved using a Markov chain Monte Carlo sampling, and posterior estimates of the standard deviations are obtained from this family. The same procedure is performed for the oriented horizontal recordings of the co-located nodes. After the definition of the time delays, we measure the SNR for each channel and each node, considering a 5 s long time window before and after the P-wave arrival (Fig. ). On the same time window that contains the P wave, we also measure the maximum amplitude.
2.2 Seismic event detection and locationFor the detection and location tasks, we consider two test cases of earthquakes recorded at regional and very local ranges. For the former case, we use the aforementioned Hawthorne earthquake. For the latter, we consider the list of micro-earthquakes obtained by from template matching of five events catalogued by the Northern California Earthquake Data Center .
2.2.1 Local earthquakes
DAS recordings of the local earthquakes are band-pass filtered over the 2–20 Hz frequency band, and resampled at 100 Hz. A spatial subsampling is then performed by stacking groups of 11 adjacent channels within each segment, with a 30-channel step. The 10 channels before and after each corner are excluded. Resulting from this procedure is a virtual array whose total number of channels (239) is similar to that of the nodal array. For each stacked trace, we calculate a characteristic function given by the kurtosis and use an Akaike information criterion (AIC) autopicker to automatically identify the onset time of these functions. Finally, we use the density-based spatial clustering of applications with noise (DBSCAN) algorithm to discard the most obvious outliers. The same procedure is adopted for the automatic estimate of P-wave arrival times at the vertical components of the nodal array.
For each event, reference locations are obtained from inversion of manually picked P- and S-wave arrival times estimated at stations of the nodal array and, when available, from the catalogue. Hypocentral locations are retrieved using the probabilistic, non-linear approach coded into the NonLinLoc software package ; the likelihood function for source location is explored using the octet-tree sampling method.
2.2.2 Regional earthquake
For the Hawthorne earthquake, 2 min long DAS recordings are band-pass filtered over the 0.5–2 Hz frequency band, and resampled at 100 Hz. Spatial subsampling is performed in a similar manner to what described above, but stacking over 51 adjacent channels with a 50-channel step, thus obtaining a virtual array of 102 elements. Delay times , between all the independent array channels are derived from the maxima CC of the corresponding cross-correlation function. These differential times are used to derive the horizontal slowness vector following the plane-wave-fitting (PWF) method
1 where the matrix contains the differences between the (EW) and (NS) components of the array channel's coordinates, and is the horizontal slowness vector, from which we derive the propagation azimuth (measured clockwise from the N direction) and apparent velocity.
Equation () is solved using a weighted least-squares approach, with weights defined as 2 so to emphasise the contribution of the most correlated channels. For the inversion, we considered only those channel pairs exhibiting a CC larger than an arbitrary threshold, here set equal to 0.85. The procedure is iterated over 4 s long time windows, sliding along the DAS recordings with 80 % overlap. Slowness uncertainties, and corresponding errors in azimuth and ray parameter estimates, are derived assuming a constant error of twice the sampling interval (i.e. 0.02 s).
3 Results3.1 Subsurface mapping
Direct comparison of DAS and nodal recordings is not possible, due to the sensitivity of the two seismic systems to different geo-observables. Many different procedures have been developed to convert DAS recordings to nodal recordings, and vice versa
Figure 3
Comparison of DAS and NODAL recordings, following Eq. (5). (a) Map of DAS segment 15 and co-located nodes. P-wave arrival in the three subsegments as temporal derivative of strain, between (b) node 94 and node 136; (c) node 136 and node 159; (d) node 159 and node 179.
[Figure omitted. See PDF]
The propagation of the P wave generated by the 4.3 event can be easily tracked across the PoroTomo investigated area using the vertical components of the geophones. Such analysis can be used as a reference of the general propagation direction and time delay. To get a first insight on the potential local anomalies in the P-wave propagation, we process vertical and north components of the nodes. In this case, we make use of the same tool
Figure 4
Example of analysis for computing P-wave time delays using 's approach applied to vertical recordings of nodal seismometers. (a) Original waveforms filtered between 0.5–2 Hz showing P-wave arrivals. (b) Average cross-correlation value for each station cross correlated to all others. (c) Relative P-wave time delays. (d) Aligned P-wave arrival using time delays in panel (c). Stations are ordered by station names. Only one in every five stations is shown in panels (a) and (d) for clarity.
[Figure omitted. See PDF]
Figure 5
Maps of P-wave time delay from correlation of recordings by nodal stations. Waveforms have been filtered to 0.5–2.0 Hz: (a) vertical components; (b) north components.
[Figure omitted. See PDF]
We first present the analysis on the P wave recorded by the DAS system, considering DAS segment 48. This segment is the longest one (about 350 m), with seven geophones almost co-located along the cable (within 30 m), and it gives us the possibility of following the P wave over a long distance (Fig. ). P waves recorded along the cable are generally similar but not as much as on the vertical components of the nodal system, giving smaller cross-correlation coefficients (about 0.95 on the average, Fig. ), with some waveforms displaying large pre-signal noise (channels 5534 and 5524 in Fig. a). Mapping the time delays and the other quantities for the two systems shows that the time delays are generally consistent, considering the computed uncertainties. Time delays decrease from 0.19 to 0.05 s (with a minimum of 0.10 s) for the nodes and from 0.19 to 0.15 s for the DAS data. In particular, only one geophone (N051) does not follow the uncertainties in time delay computed from the DAS recordings. However, such a geophone could have had issues (see also Appendix A). It is noteworthy that vertical components of the nodal system display a more limited decrease in P-wave delay time going from south to north, between 0.11 and 0.04 s, confirming that vertical and horizontal components give different measurements, as found above. Maximum amplitude in the two systems also displays similar spatial trends. More interestingly, SNR in the DAS system has a sudden drop at about m in our profile projection (Fig. d), where we also observe the nosiest waveforms (Fig. a), possibly indicating a partial failure in the cable coupling to the ground. However, such defect (if existent) does not bias the time-delay measurement.
Figure 6
Example of analysis for computing P-wave time delays using 's approach applied to DAS channels along segment 48. Same panels as in Fig. 4.
[Figure omitted. See PDF]
Figure 7
Measurements along the single DAS segment 48 (coloured lines), compared to measurements obtained using rotated horizontal recordings of co-located nodal stations (grey diamonds). (a) Map of the DAS segments. (b) P-wave time delays with associated uncertainties, together with the P-wave time delays measured on the vertical components of the nodes (thin dashed black line); (c) maximum amplitude; and (d) log(SNR) as a function of the distance along the cable segment.
[Figure omitted. See PDF]
We repeat the same experimental setting for three near-parallel and consecutive DAS segments: 28, 33 and 68. Those segments have almost the same azimuth of N30W, they are aligned but are not contiguous, and they cover a 500 m long profile. Nine geophones have been deployed close to such segments (Fig. ). Also in this case, the spatial variations of time delay, SNR and maximum amplitude between the two systems is coherent. Time delays on the horizontal components of the nodal system display values between 0.05 and 0.15 s, a larger value with respect to what we could expect from standard estimations (considering a 450 m long cable and an average apparent P-wave speed of 5 km s;
Figure 8
Same as Fig. 7 but for three consecutive (almost parallel) DAS segments: 68, 33 and 28. (e–f) Examples of waveforms recorded at DAS (e) and nodes (f).
[Figure omitted. See PDF]
To test the possibility of appreciating 3-D features, we apply our workflow to two parallel but not aligned segments, 3 and 5 that run along the longer side of a rectangular area of about 150 70 m. Eight geophones are deployed along the two segments (four geophones per segment, Fig. ). The results indicate that both time delays and maximum amplitude display the same spatial variation. In particular, time delay ranges between 0.12 and 0.12 s for both systems and indicate an unexpected east-to-west propagation. Amplitude variation are coherent in both system, increasing toward the west. Both P-wave delay times and amplitude spatial variation correlate with the P-wave velocity gradient found in . In such a velocity model, north–south-oriented velocity anomaly is found at shallow depth
Figure 9
Map of: (a) P-wave time delays and (b) maximum amplitude for two parallel DAS segments: 3 and 5 (small coloured circles). Results for co-located nodal stations are also presented (large coloured circles).
[Figure omitted. See PDF]
In this case, we notice that channels close to the end of the segments are generally different from the closest one. We suggest that the practise of removing the channels closer to the bending point of the fibre should be revised increasing the lag distance, now 10 m (a lag of 15 or 20 m could work fine).
Finally, we analysed separately all segments between 1 and 27, covering the northwestern side of the PoroTomo experiment, where most of the geothermal phenomena are found bounded by two faults mapped at the surface (i.e. fumaroles and warm ground, Fig. ). The variations of the maximum amplitude show that the highest values, i.e. where maximum amplitude goes beyond the threshold of 0.1, are found in the only two places where the fibre cable crosses the geothermal active area (i.e. near the northernmost fumaroles and where warm ground is mapped) roughly traversing the two bounding faults. Given the nature of the geothermal phenomena, we suggest that amplitude variations in this case could be related to local site effects associated with the development of the underground fracture network. Comparison with available velocity models show controversial details. On one hand, the area with the highest amplitude perfectly correlates with a very well-defined volume showing very low values with respect to the surrounding rocks. Conversely, the second interesting area, more to the north, does not show any relevant velocity anomaly. In such area, where all the injection wells are located, we were expecting a well-developed fracture network and thus a low-velocity rock volume.
Figure 10
Amplitude analysis for all DAS segments along the northwestern side of the PoroTomo experiment (segments from 1 to 30). The dashed box indicates the area of maximum amplitude, which corresponds to the fibre cable crossing the warm ground and the area of the fumaroles/mud volcanoes.
[Figure omitted. See PDF]
3.2 Seismic event detection and location3.2.1 Local earthquake
For comparing the performances of the nodal and DAS deployment toward the automatic location of micro-earthquakes at short distance ranges, we focus on an earthquake reported in the template-matching earthquake catalogue of , with detection time on 14 March 2016 at 10:42:07 UTC. Following a preliminary inspection of arrival times, that event appeared to be located in close proximity to the DAS and nodal deployments, in turn exhibiting good visibility of both waveforms and cross correlations
For deriving a reference location, precise P- and S-wave arrival times are estimated manually at 75 vertical and 48 horizontal channels of the nodal array. P-wave theoretical travel times are calculated in a 1-D gradient velocity model, obtained after averaging the 3-D velocity structure reported by the University of Wisconsin (2015) (see the Supplement, Fig. S1). The corresponding S-wave travel times are derived considering a ratio between P- and S-wave velocities () equal to 2.6, as indicated by the modified Wadati diagram (Fig. S2 in the Supplement).
Figure illustrates the comparison between the reference location obtained from manual picking of nodal data (Fig. a), and those derived from the automatic processing of both the DAS and nodal arrays (Fig. bc). The location from the P- and S-wave inversion indicates a well-constrained source volume located at the centre of the SW side of the deployment, at a depth of 460[ m beneath the surface (Fig. a). Horizontal uncertainties are on the order of 63 and 75 m for the EW and NS coordinates, respectively; the root mean square (rms) of residuals is 0.036 s.
Figure 11
Author change: source location of the earthquake recorded on 14 March 2016 at 10:42:07 UTC. (a) Samples of the likelihood function of source location (grey dots) in map view and projected along two vertical sections oriented EW and NS. Results are from travel-time inversion of manually picked P- and S-wave arrivals at the nodal array. Colours indicate the timing of the picked arrivals, according to the colour scale at the bottom right. (b) The same as panel (a) but for the automatic picking obtained at the DAS virtual array. The likelihood function for source location is clipped at the surface grid boundary. (c) The same as panels (a) and (b) but from inversion of automatically picked P-wave first arrivals at the nodal array. (d) Arrival times derived at the DAS and nodal arrays as a function of epicentral distance. Dashed lines indicate the move-out corresponding to velocities spanning the 2–4 km s interval.
[Figure omitted. See PDF]
Inversion of P-wave automatic pickings from both the DAS and nodal arrays reports a similar epicentral region. These solutions, however, are clipped at the surface, as a consequence of two separate facts. The first is that the automatic pickings at both DAS and nodal arrays include slower arrivals from more distant stations, which had been discarded from the manual estimates (see Fig. d). In addition, the manual location takes advantage of S-wave arrival times, which provide a solid constraint on ray length and hence source depth.
Additional examples of locations derived from inversion of automatic first-arrival time pickings at the DAS virtual array are reported in the Supplement for events either catalogued by or reported in the list of template-matching detections from . In all these experiments, the performance of the DAS data to retrieve the “correct” location is comparable to that exhibited by the nodal deployment. However, a more comprehensive assessment of these results is made difficult by the fact that all the sources are located well outside of the deployments. Under such condition, and in absence of S-wave time pickings, the ability to retrieve the source-to-receiver distance depends on the gradient of the velocity structure, which controls the geometry of the rays and hence their intersection with the surface.
3.2.2 The Hawthorne earthquakeIn addition to what was described in the previous section, the DAS recordings from the Hawthorne earthquake have already been analysed in and . In particular, this latter study compared the performance of the DAS and nodal arrays in seismic beam forming for deriving the propagation parameters (apparent velocity and propagation azimuth) for the direct P- and S-wave arrivals. In their work, applied the MUSIC method to different combination of DAS channels; in no case, however, did they obtain results compatible with those expected for a single plane wave propagating along the source-to-receiver direction. This occurrence was attributed to marked velocity heterogeneities and scattering sources, locally distorting the wavefront and producing loss of signal coherence, in turn masking the weaker P-wave signal impinging at the array with steep incidence angles. Following this observation, concluded that “…the DAS array exhibits poor waveform coherence and consequently produces inadequate beam-forming results that are dominated by the signatures of shallow scattered waves”.
Although these conclusions are fully consistent with the complex wave propagation we outlined above, our application of the PWF approach over short time windows sliding along the subsampled DAS recordings yields promising results which concern the real-time detection of sources at regional distance (Fig. ). As a matter of fact, the onset of the earthquake signal is marked by an abrupt increase of the average multi-channel correlation (Fig. b) which, in correspondence with the P-wave arrival, peaks at a value which is about 2 times larger than those associated with the preceding background noise. The P-wave propagation azimuth associated with the most-correlated arrivals is biased by some with respect to what is expected from the source location. The apparent velocities associated with the most-correlated portion of the P-wave arrival are consistent with those estimated by using data from the nodal array. Similar consistency is observed for the S-wave arrival, even if its onset is less clear due to contamination by the P-coda wave train.
Figure 12
Results from fitting a plane wave to DAS differential times. (a) Recording of the Hawthorne earthquake from a sample DAS stacked channel. Data are band-pass filtered over the 0.5–2 Hz frequency band. (b) Mean of from all independent channels of the DAS stacked channels. (c) Propagation azimuth; the size of the points is proportional to the average correlation of the channels used for the inversion. The dashed line indicates the theoretical propagation azimuth (337 clockwise from the N direction). (d) Apparent velocity, derived from the inverse of the modulus of the horizontal slowness vector. The dashed lines mark the velocity range obtained by from the analysis of the nodal array data. Vertical bars indicate uncertainties in azimuth and velocity.
[Figure omitted. See PDF]
Overall, the results from this exercise suggest that (i) when dealing with seismic wavelengths comparable to the DAS aperture, a simple threshold on the overall correlation of DAS channels may serve as an efficient operator for detecting the arrival of an earthquake signal; (ii) although with some bias, the estimate of the P-wave direction of propagation and apparent velocity is reliable enough to obtain a preliminary estimate about the back azimuth to the source, and (iii) a severe correlation-based weighting scheme is required to emphasise the delay times retrieved from the most coherent channel pairs.
4 DiscussionOur analysis confirms that DAS recordings can be used as complementary or in substitution of standard geophones for both monitoring activities and exploration of the subsurface. Taking into account the limitations of DAS recordings, several challenges should be addressed in the future for enabling the use of such data in, e.g. standard monitoring routines. Those challenges arise mainly from the intrinsically different structure of the data obtained from the fibre cable with respect to what is recorded from a set of single-vertical or 3C geophones, more than from the two different physical observables recorded by DAS and geophones. DAS data structure is characterised by a huge amount of observations of the seismic waves along (1) a horizontal axis and (2) with a relatively poor areal coverage with respect to a standard seismic network. Exploiting such data structure would probably require to rethink the “old-style” algorithms used seismic data analysis, which have been developed since the 1970s mostly for areal distributions of individual vertical geophones. New approaches developed for large N deployment of geophones (e.g. Long Beach) could be more appropriate and easy to adapt to DAS data.
Our analysis of the DAS and geophone data substantiates previous findings that horizontal and vertical recordings gives different images of the propagation of distant events across a seismic array. This is a fundamental point to be kept in mind when analysing DAS data, which are only horizontal, in the most-used, standard configuration of the fibre cable. Local scattering phenomena associated with topographic roughness and/or velocity heterogeneities may negatively interfere with the propagation of the P wave, potentially overwhelming the first arrivals and biassing the measure of, e.g. relative time delays.
Looking into the details of the propagation of the P wave of a regional event along segments of fibre cable, we observe that local variations of standard measures (time delays, SNR and maximum amplitude of the signal) are consistent between fibre cable and co-located geophones. In particular, we found that the analysis of the data recorded by a single segment of fibre cable shows the most stable results, even in the event of poor coupling of the fibre. Analysing the data for multiple, parallel, non-consecutive segments provides unclear results, likely as a consequence of scattering and wavefront distortion induced by local velocity heterogeneities. In this case, for the two parallel not-aligned segments, results are definitely promising, with potential for 3-D subsurface reconstructions. In the case of a profile composed of three separated segments, results are ambiguous and need further investigations. Analysing each single segment on the northwest side of the PoroTomo experiment where the geothermal phenomena are found (warm grounds and fumaroles), we show a potential correlation, at a higher resolution with respect to geophones, between amplitude variations of the recorded signal and local near-surface geology. However, such a correlation should be more quantitatively investigated with integrating a larger amount of geological data, which are not available to us at the moment, and needs further investigations to be confirmed.
In our experiments for the automatic location of local earthquakes, a basic autopicking procedure produces similar results once applied to the nodal and DAS data. In general, those time estimates require a preliminary selection before being used for locating seismic events. Moreover, in DAS data, seismic phase recognition can be more difficult than in geophone data, due to the absence of vertical recordings which are most sensitive to the P-wave arrival. Converted/scattered waves from the P-wave coda can be easily incorrectly picked as P waves at more distant or less favourably oriented segments, where the background noise can mask the very first onset of longitudinal waves impinging at steep incidence angles. This is clearly observed in Fig. d: although the DAS pickings are generally consistent with the nodal ones, at short epicentral ranges, the former exhibit a larger scatter of the residuals, likely derived from misdetection of P-coda waves or even S waves.
DAS data analysis must thus rely on specific methodologies where the consistency of the data with the underlying hypothesis is statistically evaluated and accounted for. Within this context, it is worth mentioning a statistical approach developed recently, which consistently defines, in a Bayesian sense, the “membership” of each datum to the “outliers” class and which could help further developments of DAS data treatment .
In the case of wavelengths comparable to the size of the deployment, PWF results from the regional earthquake suggest that reliable event detection and location may be achieved. To that purpose, we deem that the most crucial aspect relies on the severe correlation-based channel selection and weighting scheme adopted in the inversion of differential times. While considering DAS potentialities for wave-field decomposition, we also note that the huge amount of available channels in DAS systems is perfectly suited for application of processing techniques that improve both accuracy and precision of existing frequency–wavenumber methods, such as sub-array spatial averaging (e.g. ).
Finally, we voluntarily skip an important task in seismic monitoring systems: the definition of the event magnitude. We are aware that such a task would require additional work to be fulfilled; as previously shown, DAS recordings may exhibit large-amplitude variations even at close-by channels, thus limiting the potential of using this kind of data for magnitude estimations. Nonetheless, recent studies
5 Conclusions
We make use of DAS recordings obtained during PoroTomo experiment (Brady geothermal field) for testing their potential in simple subsurface mapping and monitoring tasks. We analyse waveforms from a regional events to get insights into the local structure of the geothermal field and from a local microseismic event to perform precise automatic event location. Our main findings are as follows:
-
DAS recordings can be used for monitoring and subsurface mapping purposes and their performance is comparable to seismological records. For the detection and location tasks, we confirm that pre-processing procedures, such as channel selection based on ground coupling, removal of channels close to cable corners, P- and S-phase identification and band-pass filtering tailored to the wavelength of interest, could be necessary to keep in the process data that satisfy quality requirements.
-
In addition to quality requirements, data selection is definitely necessary due to the large amount of data in DAS recordings. Taken together with the above point, this fact opens additional questions on the criteria to be followed for data selection and/or spatial/temporal subsampling, a sensitive point for developing automatic data-processing procedures.
-
DAS recordings represent horizontal ground displacement only, which limits, in some sense, the use of standard seismological analysis tools depicted specifically for the processing of vertical or 3-D ground motion. Within this context, a clear example is offered by the autopicking performances discussed in Sect. 3.2.1 and Sects. A1–A2 in the Appendix.
-
Although advantages and limitations of DAS systems as a seismic antenna need further investigation , our results indicate a clear potential of DAS toward coherence-based detection of sources at regional distance, complementing the results in concerning detection of local microseismicity at low SNR. If used as a seismic antenna, DAS should be deployed according to multiple segments oriented along a large variety of azimuths, so as to increase the overall sensitivity toward distinct wave-type propagation along different directions.
New monitoring and subsurface mapping tools developed for DAS recordings are needed. In particular, exploration of the DAS data space would give an important contribution toward the analysis of DAS recording in a semi-automatic system.
Appendix A P-wave time delays from local event
Here, we present the analysis of P-wave delay times for a local event. This analysis is complementary to the results presented in Sect. because the frequency content of the P-wave of a local event is generally between 10 and 20 Hz. However, due to the close proximity of the event to the stations, we cannot consider a plane-wave approximation and we have to compute P-wave delay times using a different approach with respect to the analysis reported in Sect. . In Fig. , we show the geometry of the event, nodal stations and DAS channels along segment 48. We make use of an event and cable geometry to try to maximise the P-wave delay times along the cable; i.e. the event occurs almost along the segment strike. Recordings of the local events for three systems are considered: vertical nodal stations, oriented horizontal nodal stations and DAS channels. The three systems have been analysed with the same workflow which encompasses both (1) automatic picking of a P-wave based on classical autopicker and (2) manual revision of the automatic pickings. The Baer picker has been developed as a ObsPy package, and we set it with its default values .
Figure A1
Map of the event, nodes and DAS segment used for retrieving P-wave delay times in the case of a local microseism. Crosses and yellow lines indicate the nodes and the DAS cable, respectively. Investigated nodes and DAS segment are labelled. A red star displays the event epicentre, as located using the geophone data and manual picking of P and S phases.
[Figure omitted. See PDF]
A P wave on the vertical component of the nodal stations displays a high SNR and can be easily detected by the automatic picker (vertical violet bars in Fig. a, not really visible because they are below the green bars). One station (N051) has a more limited SNR and identifying P-wave arrival can be more challenging. Manual revision does not sensibly change the arrival times (vertical green bars in Fig. a). Conversely, the P wave on the oriented horizontal components of the nodal stations displays a smaller SNR, at least for some stations (vertical violet bars in Fig. b), which need substantial manual revision, at least for N051. Autopicker results and manual revision on DAS channels are more interesting. The P-wave arrival times obtained with the Baer picker (vertical violet bars in Fig. c) display a coherent pattern from channels 5579 to 5419, the closest half of the segment to the epicentre. In the second half of the segment, the autopicker gives more scattered results. Compared with the manual pickings (vertical green bars in Fig. c), which also have a larger variability in the second half with respect to the first half, such automatic pickings seem, in many cases, to arise from the misdetection of either a receiver-side converted wave, P or S, or the S wave itself, as a P wave.
Manual pickings in the three systems are presented in Fig. d). Manual pickings for both horizontal and vertical components of the nodal stations (grey symbols) are generally similar, with slightly higher delay times for the horizontal components. Notably, those delay times coincide with the delay times measured along the cable approximately in the same locations (some nodal station have been deployed not exactly on the fibre cable). Delay times measured along with the DAS show a more complex pattern with coherently higher values in some sections of the cable (e.g. between channels 5389 and 5359). This analysis confirms the potential for the DAS recordings to reach a higher resolution especially if gauge length can be reduced to 1 m , which is already feasible with the next generation of fibre interrogators. However, also in this case, picking procedures, established for a network of vertical components, do not perform with profit, when applied to horizontal recordings.
Figure A2
(a) Vertical recordings of the geophones along the DAS segment 48. Vertical green and violet bars indicate manual and automatic picking of P waves. Panel (b) is the same as (a) but for the oriented horizontal component. (c) DAS recordings along segment 48. Symbols are as in panel (a). (d) Relative P-wave delay times from the first P pick for the three sets of waves displayed in (a) grey diamonds, (b) grey circles and (c) a red line and black dots.
[Figure omitted. See PDF]
Appendix B Amplitude variations with frequency: the case study of Vibroseis recordingsTo obtain more insights regarding the amplitude of the signal recorded along the fibre cable, we analyse the signal generated by a Vibroseis truck in a position along the strike of segment 48. The T49 Vibroseis sweeps considered here are three sweeps generated in the same location with the same apparatus (P source). Thus, for each geophone and each DAS channel, we obtain an averaged value for the maximum amplitude of the filtered signals and a standard deviation. The Vibroseis sweeps consist in a 20 s signal of increasing frequency, from 5 to 80 Hz. Here, we selected three frequency bands (5–10, 10–20 and 20–40 Hz) and we measured the maximum amplitude of the filtered signal as it varies along the cable. In this way, we can highlight local amplification for specific frequency bands.
In Fig. a), we show the geometry of the source and receivers. The source is indicated as T49. One station (N026) is clearly closer to the source with respect to the cable, and results from this station have been removed. Visual inspection of the three frequency bands (e.g. for one station and one co-located channel, Fig. b) shows that variations observed in the geophone recordings are also mapped in the DAS recordings. The patterns in maximum amplitude for the two systems (oriented horizontal geophones and DAS) as a function of the distance from T49 are shown in Fig. c. Such patterns are coherent in all the three frequency bands. In particular, for the 10–20 Hz band, local amplifications found in the geophone data are consistently retrieved from the DAS data (maximum amplitude found at about m). Moreover, DAS data offer high-resolution details clearly not available from the geophone data (due to their large inter-station distance). Our analysis confirms that DAS recordings can be used to obtain trustable information on the amplitude of the recorded signal. Again, the high spatial sampling of the fibre cable allows us to extract information unavailable using sparse stations.
Figure B1
Analysis of the amplitude variations along DAS segment 48, from Vibroseis recordings. (a) Map of the Vibroseis source location (grey circle, labelled T49) nodes (labelled grey crosses) and DAS segment 48 (labelled yellow line). (b) Example of filtered recordings of a Vibroseis sweep at co-located node N050 and DAS channel 5479. Variations in maximum amplitude for the nodes (coloured triangles) and the DAS channels (coloured circles) in different frequency bands: (c) 5–10; (d) 10–20; and (e) 20–40 Hz.
[Figure omitted. See PDF]
Code availability
Some figures are plotted using GMT .
Data availability
PoroTomo data are available at 10.15121/1368198 .
The supplement related to this article is available online at:
Author contributions
NPA and AV equally contributed to the data analysis in the subsurface mapping analysis. GS developed and executed the monitoring analysis. NPA and GS wrote the original draft of the manuscript.
Competing interests
The contact author has declared that neither they nor their co-authors have any competing interests.
Disclaimer
Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Special issue statement
This article is part of the special issue “Fibre-optic sensing in Earth sciences”. It is not associated with a conference.
Acknowledgements
We kindly thank Martijn van den Ende, Herbert Wang and an anonymous reviewer for their constructive discussion about DAS data analysis and interpretation. Nicola Piana Agostinetti thanks PoroTomo team (Kurt Feigl, Nicole Taverna and Jon Weers) for their continuous support in handling the data.
Financial support
This research has been supported by the Austrian Science Fund (grant no. M2218-N29).
Review statement
This paper was edited by Philippe Jousset and reviewed by Martijn van den Ende, Herbert Wang, and one anonymous referee.
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.