It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Orbital angular momentum (OAM), which describes tailoring the spatial physical dimension of light waves into a helical phase structure, has given rise to many applications in optical manipulation, microscopy, imaging, metrology, sensing, quantum science, and optical communications. Light beams carrying OAM feature two distinct characteristics, i.e., inherent orthogonality and unbounded states in principle, which are suitable for capacity scaling of optical communications. In this paper, we give an overview of OAM and beyond in free-space optical communications. The fundamentals of OAM, concept of optical communications using OAM, OAM modulation (OAM modulation based on spatial light modulator, high-speed OAM modulation, spatial array modulation), OAM multiplexing (spectrally efficient, high capacity, long distance), OAM multicasting (adaptive multicasting, N-dimensional multicasting), OAM communications in turbulence (adaptive optics, digital signal processing, auto-alignment system), structured light communications beyond OAM (Bessel beams, Airy beams, vector beams), diverse and robust communications using OAM and beyond (multiple scenes, turbulence-resilient communications, intelligent communications) are comprehensively reviewed. The prospects and challenges of optical communications using OAM and beyond are also discussed at the end. In the future, there will be more opportunities in exploiting extensive advanced applications from OAM beams to more general structured light.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China