It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Autism spectrum disorder (ASD), a group of neurodevelopmental disorders characterized by social communication deficits and stereotyped behaviors, may be associated with changes to the gut microbiota. However, how gut commensal bacteria modulate brain function in ASD remains unclear. Here, we used chromodomain helicase DNA-binding protein 8 (CHD8) haploinsufficient mice as a model of ASD to elucidate the pathways through which the host and gut microbiota interact with each other. We found that increased levels of amino acid transporters in the intestines of the mouse model of ASD contribute to the high level of serum glutamine and the increased excitation/inhibition (E/I) ratio in the brain. In addition, elevated α-defensin levels in the haploinsufficient mice resulted in dysregulation of the gut microbiota characterized by a reduced abundance of Bacteroides. Furthermore, supplementation with Bacteroides uniformis improved the ASD-like behaviors and restored the E/I ratio in the brain by decreasing intestinal amino acid transport and the serum glutamine levels. Our study demonstrates associations between changes in the gut microbiota and amino acid transporters, and ASD-like behavioral and electrophysiology phenotypes, in a mouse model.
The gut microbiota has been shown to modulate the neural function via the microbiota-gut-brain axis. Here, the authors show that Bacteroides uniformis, a gut commensal bacterium, restores the ASD-like phenotypes by reducing intestinal amino acid transport in an ASD mouse model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Chinese Academy of Sciences, Beijing Institutes of Life Science, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309)
2 Chinese Academy of Sciences, Beijing Institutes of Life Science, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
3 Chinese Academy of Sciences, State Key Laboratory of Microbial Resources, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309)
4 Chinese Academy of Sciences, Beijing Institutes of Life Science, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); University of Chinese Academy of Sciences, Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, Hangzhou, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); Chinese Academy of Sciences, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); Chinese Academy of Sciences, Center for Excellence in Animal Evolution and Genetics, Kunming, China (GRID:grid.9227.e) (ISNI:0000000119573309)