Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Some of the most devastating natural events on Earth, such as earthquakes and tropical cyclones, are prone to trigger other natural events, critical infrastructure failures, and socioeconomic disruptions. Man-made disasters may have similar effects, although to a lesser degree. We investigate the space of possible interactions between 19 types of loss-generating events, first by encoding possible one-to-one interactions into an adjacency matrix A, and second by calculating the interaction matrix M of emergent chains-of-events. We first present the impact of 24 topologies of A on M to illustrate the non-trivial patterns of cascading processes, in terms of the space of possibilities covered and of interaction amplification by feedback loops. We then encode A from 29 historical cases of cascading disasters and compute the matching matrix M. We observe, subject to data incompleteness, emergent cascading behaviors in the technological and socioeconomic systems, across all possible triggers (natural or man-made); disease is also a systematic emergent phenomenon. We find interactions being mostly amplified via two events: network failure and business interruption, the two events with the highest in-degree and betweenness centralities. This analysis demonstrates how cascading disasters grow in and cross over natural, technological, and socioeconomic systems.

Details

Title
Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics
Author
Mignan, Arnaud 1 ; Wang, Ziqi 2   VIAFID ORCID Logo 

 Institute of Risk Analysis, Prediction and Management (Risks-X), Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China; Department of Earth and Space Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China 
 Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510405, China; [email protected] 
First page
7317
Publication year
2020
Publication date
2020
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2635383494
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.