Full Text

Turn on search term navigation

© 2022 Ortin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Parsers are used in different software development scenarios such as compiler construction, data format processing, machine-level translation, and natural language processing. Due to the widespread usage of parsers, there exist different tools aimed at automizing their generation. Two of the most common parser generation tools are the classic Lex/Yacc and ANTLR. Even though ANTLR provides more advanced features, Lex/Yacc is still the preferred choice in many university courses. There exist different qualitative comparisons of the features provided by both approaches, but no study evaluates empirical features such as language implementor productivity and tool simplicity, intuitiveness, and maintainability. In this article, we present such an empirical study by conducting an experiment with undergraduate students of a Software Engineering degree. Two random groups of students implement the same language using a different parser generator, and we statistically compare their performance with different measures. Under the context of the academic study conducted, ANTLR has shown significant differences for most of the empirical features measured.

Details

Title
An empirical evaluation of Lex/Yacc and ANTLR parser generation tools
Author
Ortin, Francisco; Quiroga, Jose; Rodriguez-Prieto, Oscar; Garcia, Miguel
First page
e0264326
Section
Research Article
Publication year
2022
Publication date
Mar 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2635487951
Copyright
© 2022 Ortin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.