It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The efficiency in converting solar energy into electricity is fundamental wherever photovoltaic panels are present, still more crucial in the design of racing solar vehicles. Even minimal reductions in conversion ratio, maintained for the long solar races, cause solar cars to lose race positions and competitiveness. Here we introduce a numerical-experimental study for choosing the best combination of materials to encapsulate cells in solar roofs. The tangible expectation is to improve the performance of the monocrystalline silicon cells used in our solar vehicle by maximizing heat dissipation to the environment. The operating temperature is in fact a determining factor for efficient conversion, with efficiency drops of the order of 5% every 10 °C. Different stratifications, some of which quite unusual in solar panel design, were compared by transient thermal simulations and experiments. Specifically, five alternatives were analyzed, varying in the presence and thickness of the encapsulation materials (ETFE, EVA and PET). The main scope of the work, however, was not choosing the best among several specific hypotheses, but the development of an accurate numerical model able to predict the behavior of the solar panel in conditions close to the expected ones. This model, in fact, has provided valuable help in optimizing the vehicle design by allowing to evaluate the effect of alternative materials and construction solutions in the cell’s construction housing structure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Bologna (UNIBO), Department of Industrial Engineering , Via Fontanelle 40, Forlì , Italy
2 Aix-Marseille University, Campus Universitaire de Saint Jérôme , Marseille Cedex 20, 13397 Marseille , France; Karlsruhe Institute of Technology (KIT), Karlsruhe School of Optics & Photonics , Schloßpl. 19, 76131 Karlsruhe , Germany
3 University of Bologna (UNIBO), Department of Electrical, Energy and Information Engineering “Guglielmo Marconi” , Viale del Risorgimento 2, Bologna , Italy