It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nowadays, multi-label classification can be considered as one of the important challenges for classification problem. In this case instances are assigned more than one class label. Ensemble learning is a process of supervised learning where several classifiers are trained to get a better solution for a given problem. Feature reduction can be used to improve the classification accuracy by considering the class label information with principal Component Analysis (PCA). In this paper, stacked ensemble learning method with augmented class information PCA (CA PCA) is proposed for classification of multi-label data (SEMML). In the initial step, the dimensionality reduction step is applied, then the number of classifiers have to be chosen to apply on the original training dataset, then the stacking method is applied to it. By observing the results of experiments conducted are showing our proposed method is working better as compared to the existing methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of CSA, Indian Institute of Scence , Bangaluru, Karnataka , India
2 Department of CSE, Siddaganga Institute of Technology , Tumakuru, Karnataka , India