It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Regeneration of adsorbents for reuse is crucial for reducing operating costs and maintaining sustainable systems. Few researchers have studied the regeneration of sorbents without using chemical solvents or appropriate methods. The purpose of this study was to evaluate the feasibility of the sonochemical technique (ST) for the regeneration of granular activated carbon (GAC), a mixed cation and anion resin (DOWEX MB-50), and an anion resin (IRA910) for the removal of per- and polyfluoroalkyl substances (PFAS). The ST was performed at 120 kW, and the power density was 250 W L−1 for 30 min. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to examine physicochemical properties of the spent adsorbents. The removal efficiency of the spent adsorbent regeneration occurred in the following order: DOWEX > GAC > IRA910. As the PFAS-adsorbed adsorbents disappeared in the spectrum, the FTIR results showed the existence of a sulfonic group that is similar to the peaks of virgin sorbents. However, this method affected the morphology of GAC and IRA910 but not DOWEX MB-50. Consequently, the ST is a potential alternative to chemical regeneration for DOWEX MB-50 resins. It is also a potential method for an eco-friendly approach to regenerate PFAS-adsorbed materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University , Thailand
2 Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University , Thailand; Graduate School of Global Environmental Studies, Kyoto University , Japan
3 Faculty of Environment and Resource Studies, Mahidol University , Thailand
4 Graduate School of Global Environmental Studies, Kyoto University , Japan