Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The volatility of the cumulative displacement of landslides is related to the influence of external factors. To improve the prediction of nonlinear changes in landslide displacement caused by external influences, a new combined forecasting model of landslide displacement has been proposed. Variational modal decomposition (VMD) was used to obtain the trend and fluctuation sequences of the original sequence of landslide displacement. First, we established a stacked long short time memory (LSTM) network model and introduced rainfall and reservoir water levels as influencing factors to predict the fluctuation sequence; next, we used a threshold autoregressive (TAR) model to predict the trend sequence, following which the trend and fluctuation prediction sequence were superimposed to obtain the cumulative predicted displacement of the landslide. Finally, the VMD-stacked LSTM-TAR combination model based on the variational modal decomposition, stacked long short time memory network, and a threshold autoregressive model was built. Taking the landslide of Baishuihe in the Three Gorges Reservoir area as an example, through comparison with the prediction results of the VMD-recurrent neural network-TAR, VMD-back propagation neural network-TAR, and VMD-LSTM-TAR, the proposed combined prediction model was noted to have high accuracy, and it provided a novel approach for the prediction of volatile landslide displacement.

Details

Title
Prediction of Landslide Displacement Based on the Combined VMD-Stacked LSTM-TAR Model
Author
Gao, Yaping 1 ; Chen, Xi 1 ; Tu, Rui 2 ; Chen, Guo 1 ; Luo, Tong 1 ; Xue, Dongdong 1 

 College of Earth Sciences, Chengdu University of Technology, Chengdu 610054, China; [email protected] (Y.G.); [email protected] (X.C.); [email protected] (G.C.); [email protected] (T.L.); [email protected] (D.X.) 
 National Times Service Center of Chinese Academy of Sciences, Xi’an 710600, China 
First page
1164
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637783567
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.