Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The misuse of pesticides poses a tremendous threat to human health. Excessive pesticide residues have been shown to cause many diseases. Many sensor detection methods have been developed, but most of them suffer from problems such as slow detection speed or narrow detection range. So, the development of rapid, direct and sensitive means of detecting trace amounts of pesticide residues is always necessary. A novel online sensor technique was developed for direct analysis of pesticides in complex matrices with no sample pretreatment. The portable sensor ion source consists of an MPT (microwave plasma torch) with desolventizing capability and an APCI (atmosphere pressure chemical ionization), which provides abundant precursor ions and a strong electric field. The performance which improves the ionization efficiency and suppresses the background signal was verified by using pesticide standard solution and pesticide pear juice solution measurements with an Orbitrap mass spectrometer. The limit of detection (LOD) and the limit of quantization (LOQ) of the method were measured by pear juice solutions that were obtained in the ranges of 0.034–0.79 μg/L and 0.14–1 μg/L. Quantitative curves were obtained ranging from 0.5 to 100 μg/L that showed excellent semi-quantitative ability with correlation coefficients of 0.985–0.997. The recoveries (%) of atrazine, imidacloprid, dimethoate, profenofos, chlorpyrifos, and dichlorvos were 96.6%, 112.7%, 88.1%, 85.5%, 89.2%, and 101.9% with the RSDs ranging from 5.89–14.87%, respectively. The results show that the method has excellent sensitivity and quantification capability for rapid and direct detection of trace pesticide.

Details

Title
A Novel Integrated APCI and MPT Ionization Technique as Online Sensor for Trace Pesticides Detection
Author
Zhao, Gaosheng 1   VIAFID ORCID Logo  ; Chu, Fengjian 2 ; Zhou, Jianguang 3   VIAFID ORCID Logo 

 State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310027, China; [email protected] 
 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; [email protected] 
 State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310027, China; [email protected]; Department of Chemistry, Zhejiang University, Hangzhou 310027, China 
First page
1816
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637787397
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.