Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Real-time monitoring of dissolved oxygen (DO) and pH is of great significance for understanding cellular metabolism. Herein, a dual optical pH/O2 sensing membrane was prepared by the electrospinning method. Cellulose acetate (CA) and poly(ε-caprolactone) (PCL) nanofiber membrane blended with platinum (II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was used as the DO sensing matrix, upon which electrospun nanofiber membrane of chitosan (CS) coupled with fluorescein 5-isothiocyanate (FITC) was used as the pH sensing matrix. The electrospun sensing film prepared from biocompatible biomaterials presented good response to a wide range of DO concentrations and physiological pH. We used it to monitor the exracellular acidification and oxygen consumption levels of cells and bacteria. This sensing film can provide a luminescence signal change as the DO and pH change in the growth microenvironment. Due to its advantages of good biocompatibility and high stability, we believe that the dual functional film has a high value in the field of biotechnology research.

Details

Title
A Dual pH/O2 Sensing Film Based on Functionalized Electrospun Nanofibers for Real-Time Monitoring of Cellular Metabolism
Author
Zhou, Dongyan; Liu, Hongtian; Juewei Ning  VIAFID ORCID Logo  ; Cao, Ge; Zhang, He  VIAFID ORCID Logo  ; Deng, Mengyu; Tian, Yanqing  VIAFID ORCID Logo 
First page
1586
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637788699
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.