Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A remote real-time monitoring system was developed for the remote real-time monitoring of mine slope deformation and internal forces. The system is based on cloud-computing technology and a 5S multimedia streaming monitoring data transmission system. It has now been applied to an open-pit iron mine in Nanfen to monitor the horizontal displacement of potential sliding surfaces. Compared with geometric monitoring methods in traditional geodetic surveying, the results show that this monitoring system has higher accuracy (0.01 mm) and the ability to monitor in real time for 24 h. These features can realize early warnings of mine slopes from multiple dimensions, and provide a guarantee for safe, continuous and the efficient production of mines. In addition, it can provide a certain reference for the prevention and control of mine slope disasters, and is beneficial to the application of information-based early warning technology.

Details

Title
Remote Real-Time Monitoring System for Mine Slope Based on Cloud Computing
Author
Zhou, Yijun 1   VIAFID ORCID Logo  ; Li, Yanlin 2   VIAFID ORCID Logo  ; Chen, Yulong 3 

 College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, China 
 College of Civil and Architectural Engineering, Beijing University of Technology, Beijing 100124, China; [email protected] 
 School of Energy and Mining Engineering, China University of Mining and Technology, Beijing 100083, China; [email protected] 
First page
714
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637800789
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.