Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The oxidation of titanium and titanium aluminides has attracted the attention of scientists for many years because of their high-temperature application. The most popular method to investigate oxidation behavior is the measurement of alloy mass changes during exposure to elevated-temperature under isothermal or thermal cycling conditions. However, the thermogravimetric method is not enough to establish an oxidation mechanism. In this paper, the temperature-programmed oxidation (TPOx) and reduction (TPR) were applied for the Ti–Al and Ti–Al–Nb systems, which was a new experimental concept which revealed interesting phenomena. Although oxidation of titanium alloys is well-described in the literature, not many papers present at the same time reduction of oxidized alloys. The results presented in the paper concentrated on the first stages of oxidation, which are scarcely described in the literature, but are important to understand the oxidation mechanism. Comparison between powder and bulk samples with similar compositions revealed essential differences in the oxidation mechanism.

Details

Title
Some Aspects of Oxidation and Reduction Processes in Ti–Al and Ti–Al–Nb Systems
Author
Mitoraj-Królikowska, Marzena  VIAFID ORCID Logo  ; Drożdż, Ewa  VIAFID ORCID Logo 
First page
1640
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2637803945
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.