It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Antimicrobial peptide (AMP) self-assembly is an effective way to synthesis antimicrobial biomaterials. In previous studies, we found PAF26 AMP (Ac-RKKWFW-NH2) and its derivative K2–F2 peptide (Ac-KKRKKWFWFF-NH2) could both self-assemble into hydrogels, but they had distinct microscopic structures. Therefore, in this work five PAF26 peptide derivatives with different numbers of aromatic amino acids are designed to better understand the self-assembly mechanism of aromatic AMP. The transmission electron microscopy, infrared spectroscopy, circular dichroism, and fluorescence spectroscopy characterizations are carried out to study the microscope structure, secondary conformation, and molecular interactions. It is found that the five peptide derivatives have different microscopic structures, and the number of aromatic amino acids will affect the peptide hydrogen bonding and aromatic stacking interactions, causing significant differences in the secondary conformation and microscopic structure. This work will enhance the comprehension of aromatic AMP self-assembly.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China





