Content area
Abstract
Biological organisms learn from interactions with their environment throughout their lifetime. For artificial systems to successfully act and adapt in the real world, it is desirable to similarly be able to learn on a continual basis. This challenge is known as lifelong learning, and remains to a large extent unsolved. In this Perspective article, we identify a set of key capabilities that artificial systems will need to achieve lifelong learning. We describe a number of biological mechanisms, both neuronal and non-neuronal, that help explain how organisms solve these challenges, and present examples of biologically inspired models and biologically plausible mechanisms that have been applied to artificial systems in the quest towards development of lifelong learning machines. We discuss opportunities to further our understanding and advance the state of the art in lifelong learning, aiming to bridge the gap between natural and artificial intelligence.
It is an outstanding challenge to develop intelligent machines that can learn continually from interactions with their environment, throughout their lifetime. Kudithipudi et al. review neuronal and non-neuronal processes in organisms that address this challenge and discuss pathways to developing biologically inspired approaches for lifelong learning machines.
Details




















1 University of Texas at San Antonio, San Antonio, USA (GRID:grid.215352.2) (ISNI:0000000121845633)
2 Intelligent Systems Laboratory, Teledyne Scientific, RTP, USA (GRID:grid.421352.3) (ISNI:0000 0004 0634 4795)
3 Massachusetts Institute of Technology, Boston, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786)
4 University of California at San Diego, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242)
5 Allen Discovery Center, Tufts University, Medford, USA (GRID:grid.429997.8) (ISNI:0000 0004 1936 7531); Wyss Institute, Harvard University, Cambridge, USA (GRID:grid.38142.3c) (ISNI:000000041936754X)
6 University of Vermont, Burlington, USA (GRID:grid.59062.38) (ISNI:0000 0004 1936 7689)
7 University of Southern California, Los Angeles, USA (GRID:grid.42505.36) (ISNI:0000 0001 2156 6853)
8 University of British Columbia, Vancouver, Canada (GRID:grid.17091.3e) (ISNI:0000 0001 2288 9830)
9 Columbia University, New York, USA (GRID:grid.21729.3f) (ISNI:0000000419368729)
10 University of Chicago, Chicago, USA (GRID:grid.170205.1) (ISNI:0000 0004 1936 7822)
11 HRL Laboratories, Malibu, USA (GRID:grid.435086.c) (ISNI:0000 0001 2229 321X)
12 Georgia Institute of Technology, Atlanta, USA (GRID:grid.213917.f) (ISNI:0000 0001 2097 4943)
13 Vanderbilt University, Nashville, USA (GRID:grid.152326.1) (ISNI:0000 0001 2264 7217)
14 University of California, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243)
15 Argonne National Laboratory, Lemont, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845)
16 Allen Discovery Center, Tufts University, Medford, USA (GRID:grid.429997.8) (ISNI:0000 0004 1936 7531)
17 The University of Texas at Austin, Austin, USA (GRID:grid.89336.37) (ISNI:0000 0004 1936 9924)
18 IT University of Copenhagen, Copenhagen, Denmark (GRID:grid.32190.39) (ISNI:0000 0004 0620 5453)
19 University of California at San Diego, La Jolla, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242); Salk Institute for Biological Studies, La Jolla, USA (GRID:grid.250671.7) (ISNI:0000 0001 0662 7144)
20 Loughborough University, Loughborough, UK (GRID:grid.6571.5) (ISNI:0000 0004 1936 8542)
21 University of Texas at San Antonio, San Antonio, USA (GRID:grid.215352.2) (ISNI:0000000121845633); Rochester Institute of Technology, Rochester, USA (GRID:grid.262613.2) (ISNI:0000 0001 2323 3518)
22 Baylor College of Medicine, Houston, USA (GRID:grid.39382.33) (ISNI:0000 0001 2160 926X)
23 Johns Hopkins University, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311)
24 Sandia National Laboratories, Albuquerque, USA (GRID:grid.474520.0) (ISNI:0000000121519272)
25 University of Massachusetts, Amherst, USA (GRID:grid.266683.f) (ISNI:0000 0001 2166 5835)