Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We address the problem of scalable content-based search in large collections of music documents. Music content is highly complex and versatile and presents multiple facets that can be considered independently or in combination. Moreover, music documents can be digitally encoded in many ways. We propose a general framework for building a scalable search engine, based on (i) a music description language that represents music content independently from a specific encoding, (ii) an extendible list of feature-extraction functions, and (iii) indexing, searching, and ranking procedures designed to be integrated into the standard architecture of a text-oriented search engine. As a proof of concept, we also detail an actual implementation of the framework for searching in large collections of XML-encoded music scores, based on the popular ElasticSearch system. It is released as open-source in GitHub, and available as a ready-to-use Docker image for communities that manage large collections of digitized music documents.

Details

Title
A Framework for Content-Based Search in Large Music Collections
Author
Zhu, Tiange 1   VIAFID ORCID Logo  ; Raphaël Fournier-S’niehotta 1   VIAFID ORCID Logo  ; Rigaux, Philippe 1 ; Travers, Nicolas 2   VIAFID ORCID Logo 

 CEDRIC Laboratory, CNAM Paris, 75003 Paris, France; [email protected] (R.F.-S.); [email protected] (P.R.) 
 Research Center, Léonard de Vinci Pôle Universitaire, 92400 Paris La Défense, France 
First page
23
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642338304
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.