Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of computer science technology, theory and method of image segmentation are widely used in fish discrimination, which plays an important role in improving the efficiency of fisheries sorting and biodiversity studying. However, the existing methods of fish images segmentation are less accurate and inefficient, which is worthy of in-depth exploration. Therefore, this paper proposes an atrous pyramid GAN segmentation network aimed at increasing accuracy and efficiency. This paper introduces an atrous pyramid structure, and the GAN module is added before the CNN backbone in order to augment the dataset. The Atrous pyramid structure first fuses the input and output of the dilated convolutional layer with a small sampling rate and then feeds the fused features into the subsequent dilated convolutional layer with a large sampling rate to obtain dense multiscale contextual information. Thus, by capturing richer contextual information, this structure improves the accuracy of segmentation results. In addition to the aforementioned innovation, various data enhancement methods, such as MixUp, Mosaic, CutMix, and CutOut, are used in this paper to enhance the model’s robustness. This paper also improves the loss function and uses the label smoothing method to prevent model overfitting. The improvement is also tested by extensive ablation experiments. As a result, our model’s F1-score, GA, and MIoU were tested on the validation dataset, reaching 0.961, 0.981, and 0.973, respectively. This experimental result demonstrates that the proposed model outperforms all the other contrast models. Moreover, in order to accelerate the deployment of the encapsulated model on hardware, this paper optimizes the execution time of the matrix multiplication method on Hbird E203 based on Strassen’s algorithm to ensure the efficient operation of the model on this hardware platform.

Details

Title
Atrous Pyramid GAN Segmentation Network for Fish Images with High Performance
Author
Zhou, Xiaoya 1   VIAFID ORCID Logo  ; Chen, Shuyu 2   VIAFID ORCID Logo  ; Ren, Yufei 1 ; Zhang, Yan 1   VIAFID ORCID Logo  ; Fu, Junqi 3 ; Fan, Dongchen 3 ; Lin, Jingxian 3 ; Wang, Qing 1 

 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; [email protected] (X.Z.); [email protected] (Y.R.); [email protected] (Y.Z.) 
 College of Engineering, China Agricultural University, Beijing 100083, China; [email protected] 
 International College Beijing, China Agricultural University, Beijing 100083, China; [email protected] (J.F.); [email protected] (D.F.); [email protected] (J.L.) 
First page
911
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642370586
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.