Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Machine learning approaches, such as soft independent modeling of class analogy (SIMCA) and pathway analysis, were introduced in depression research in the 1990s (Maes et al.) to construct neuroimmune endophenotype classes. The goal of this paper is to examine the promise of precision psychiatry to use information about a depressed person’s own pan-omics, environmental, and lifestyle data, or to tailor preventative measures and medical treatments to endophenotype subgroups of depressed patients in order to achieve the best clinical outcome for each individual. Three steps are emerging in precision medicine: (1) the optimization and refining of classical models and constructing digital twins; (2) the use of precision medicine to construct endophenotype classes and pathway phenotypes, and (3) constructing a digital self of each patient. The root cause of why precision psychiatry cannot develop into true sciences is that there is no correct (cross-validated and reliable) model of clinical depression as a serious medical disorder discriminating it from a normal emotional distress response including sadness, grief and demoralization. Here, we explain how we used (un)supervised machine learning such as partial least squares path analysis, SIMCA and factor analysis to construct (a) a new precision depression model; (b) a new endophenotype class, namely major dysmood disorder (MDMD), which is a nosological class defined by severe symptoms and neuro-oxidative toxicity; and a new pathway phenotype, namely the reoccurrence of illness (ROI) index, which is a latent vector extracted from staging characteristics (number of depression and manic episodes and suicide attempts), and (c) an ideocratic profile with personalized scores based on all MDMD features.

Details

Title
Precision Nomothetic Medicine in Depression Research: A New Depression Model, and New Endophenotype Classes and Pathway Phenotypes, and A Digital Self
Author
Maes, Michael 1 

 Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; [email protected]; Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC 3220, Australia 
First page
403
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754426
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642415656
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.