Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The halloysite has been subjected to modification through ultrasound (HU), sulfuric acid (HU-SA), and oligocyclopentadiene resin (HU-OCPD). The modified materials were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry (TG), and N2 adsorption-desorption isotherms, and tested as low-cost adsorbents for removal of Rhodamine B dye (RhB) from aqueous solutions. Batch experiments were conducted to study the effect of different operational parameters such as adsorbent dose, solution pH, and contact time. It was observed that the adsorption was strongly pH-dependent and that solution pH at 2.0 had the greatest removal efficiency for the dye. The experimental data were modeled using several isotherm and kinetic models such as Freundlich, Langmuir, Temkin as well as pseudo-first-order, pseudo-second-order, and intraparticle diffusion. It was found that the equilibrium adsorption data can be fitted well using the Freundlich isotherm model and the adsorption kinetics follows a pseudo-second-order model. The adsorption capacity of HU, HU-SA, and HU-OCPD was found to be 8.37, 13.1, and 17.8 mg/g, respectively. The results revealed that surface modification of halloysite via acid activation and polymer loading results in a significant increase in the removal of RhB from aqueous solution. This study has shown potential on organo-halloysite for organic dye adsorption from water.

Details

Title
Efficient Rhodamine B Dye Removal from Water by Acid- and Organo-Modified Halloysites
Author
Wierzbicka, Ewa 1   VIAFID ORCID Logo  ; Kuśmierek, Krzysztof 2 ; Świątkowski, Andrzej 2   VIAFID ORCID Logo  ; Legocka, Izabella 1 

 Department of Polymer Technology and Processing, Łukasiewicz-Industrial Chemistry Institute, 01-793 Warsaw, Poland; [email protected] 
 Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland; [email protected] (K.K.); [email protected] (A.Ś.) 
First page
350
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642513422
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.