Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Gauge stations have uneven lengths of discharge records owing to the historical hydrologic data collection efforts. For watersheds with limited water data length, the flood frequency model, such as the Log-Pearson Type III, will have large uncertainties. To improve the flood frequency prediction for these watersheds, we propose a Bayesian Log-Pearson Type III model with spatial priors (BLP3-SP), which uses a spatial regression model to estimate the prior distribution of the parameters from nearby stations with longer data records and environmental factors. A Markov chain Monte Carlo (MCMC) algorithm is used to estimate the posterior distribution and associated flood quantiles. The method is validated using a case study watershed with 15 streamflow gauge stations located in the San Jacinto River Basin in Texas, US. The result shows that the BLP3-SP outperforms other choices of the priors for the Bayesian Log-Pearson Type III model by significantly reducing the uncertainty in the flood frequency estimation for the station with short data length. The results have confirmed that the spatial prior knowledge can improve the Bayesian inference of the Log-Pearson Type III flood frequency model for watersheds with short gauge period.

Details

Title
BLP3-SP: A Bayesian Log-Pearson Type III Model with Spatial Priors for Reducing Uncertainty in Flood Frequency Analyses
Author
Tian, Dan  VIAFID ORCID Logo  ; Wang, Lei  VIAFID ORCID Logo 
First page
909
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642683636
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.