Full text

Turn on search term navigation

© 2022 Rothschild et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Numerous human conditions are associated with the microbiome, yet studies are inconsistent as to the magnitude of the associations and the bacteria involved, likely reflecting insufficiently employed sample sizes. Here, we collected diverse phenotypes and gut microbiota from 34,057 individuals from Israel and the U.S.. Analyzing these data using a much-expanded microbial genomes set, we derive an atlas of robust and numerous unreported associations between bacteria and physiological human traits, which we show to replicate in cohorts from both continents. Using machine learning models trained on microbiome data, we show prediction accuracy of human traits across two continents. Subsampling our cohort to smaller cohort sizes yielded highly variable models and thus sensitivity to the selected cohort, underscoring the utility of large cohorts and possibly explaining the source of discrepancies across studies. Finally, many of our prediction models saturate at these numbers of individuals, suggesting that similar analyses on larger cohorts may not further improve these predictions.

Details

Title
An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents
Author
Rothschild, Daphna; Leviatan, Sigal; Hanemann, Ariel; Cohen, Yossi; Weissbrod, Omer; Segal, Eran
First page
e0265756
Section
Research Article
Publication year
2022
Publication date
Mar 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642870812
Copyright
© 2022 Rothschild et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.